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Abstract

This document provides a comprehensible view of portfolio credit risk modeling using the copula

approach (t-Student case). It emphasizes the practical aspects, including short introductions of

methods, examples, and a discussion of the implementation details. It takes into account the

sensitivity of the risk with respect to the estimated parameters and provides a practical method to

incorporate this uncertainty in the portfolio credit risk measure. Finally, a method for optimizing

the portfolio credit risk is provided.
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Glossary

n Number of obligors in the portfolio.

s Number of sectors/factors.

r Number of ratings.

ni Number of obligors in the i-th sector/factor. It is a component of vector ~n that

satisfies ∑
s
i=1 ni = n.

nt
i j Number of obligors in the i-th sector/factor having the j-th rating at the beginning

of the t-th period.

kt
i j Number of defaults in the i-th sector/factor having the j-th rating at the beginning

of the t-th period.

Ti Default time (aka time-until-default, aka time-to-default, aka survival time) of the

i-th obligor.

F Multivariate distribution of default times or time-until-default. It has n components

with marginal distributions Fi.

Fi Default time distribution of the i-th obligor. Sometimes refers to default time

distribution of the i-th rating because obligor’s Fi depends only on his rating.

pi Probability that i-th obligor/rating defaults within the next 1-year, i.e., Fi(1).

R̂ Obligors’ correlation block matrix of dimension n×n.

R Factor correlation matrix of dimension s×s.

~w Factor loadings, vector of dimension s.

Bs(~n, ~d,M) Covariance s×s block matrix in which~n are the number of individuals per block,
~d are the diagonal values, and M are the block values. See Section A.4.

td(ν ,~µ,Σ) Multivariate t-Student distribution of dimension d with ν degrees of freedom, mean

vector ~µ , and dispersion or scatter matrix Σ.

Ct

ν ,R̂
t-Student copula with ν degrees of freedom and correlation matrix R̂.

Ct
ν ,~w,R Multi-factor t-Student copula with ν degrees of freedom, factor loadings ~w, and

factor correlation matrix R. It is merely a t-Student copula.

Notes

1. Factors = Sectors. CCruncher considers that dependence between obligors is determined by

obligor’s industrial sectors causing that sectors and factors be equivalents. This text uses

sectors and factors indistinctly to refer to factors.

2. Time unit. We use the 1-year time unit without loss of generality in order to simplify the

exposition.





1 — Introduction

CCruncher is a project for quantifying portfolio credit risk. It was developed and is maintained

by Gerard Torrent, an enthusiast who lives in Barcelona (Catalonia). The latest version of the

project can be downloaded from the CCruncher’s site, http://www.ccruncher.net.

The CCruncher framework comprises this document and two pieces of software. These elements

are released under open-source type licenses. CCruncher is a mature and active project in

which users may participate by sending suggestions and contributions to gtorrent@ccruncher.net.

Because CCruncher is an evolving project, the version identifier should be mentioned when

referring to the project name (e.g., CCruncher-2.5.1).

This document provides a comprehensible view of portfolio credit risk modeling using the copula

approach (t-Student case). This document emphasizes the practical aspects, including short

introductions of methods, examples, and a discussion of the implementation details.

Portfolio credit risk tries to respond to questions such as: “What is the expected portfolio loss

for the next year?” and “How much could I lose in a really bad year?” There are several

approaches to answering these questions. All of them attempt to ascertain the portfolio loss

distribution and measure the credit risk using a set of selected statistics (e.g., mean, quantile),

but they differ in how to obtain this distribution. The following list briefly present the most used

models [7, 4, 12][3, chap. 2.4].

Actuarial models consider that the frequency of defaults (Poisson type distributions) is the

proper manner in which to analyze observed defaults. Compounding default frequency with the

obligors’ exposure gives the portfolio loss distribution. The main representative of this approach

is the CreditRisk+ model [36].

Intensity models consider that an obligor defaults when occurs the first jump of a Poisson

process with random intensity given by a Cox process. Dependency between defaults is induced

by assuming that each intensity is a function of a common process and an idiosyncratic process.

Actuarial models may be included within this family to the extent that they have a static intensity.

Bernoulli mixture models represent the i-th obligor’s default using a Bernoulli variable (with

probability of default pi). These variables are conditionally independent given a vector of default

probabilities with a known density. The sum of the defaulted obligors’ exposure gives the

portfolio loss distribution.

Factor models represent the i-th obligor using a random variable and consider that this obligor de-

faults when this variable crosses a preset threshold. These variables depend on a low-dimensional

random vector of common factors. Conditional on factors, factor models are Bernoulli mixture

models. CreditMetricsTM [18] and KMV [6] are models of this type.

Copula models represent the i-th obligor using a random variable and consider that this obligor

defaults when this variable satisfies a given condition. The dependence between these variables

is explicitly modeled using a copula [10]. The sum of the defaulted obligors’ exposure gives the

portfolio loss distribution. In the Li copula model [24], random variables are the obligors default

times and the default trigger is to cross a preset threshold. The multi-factor Gaussian case of the

Li model covers the CreditMetricsTM model.

CCruncher uses the copula approach to formulate the model, then restrict the model into a factor

http://www.ccruncher.net
mailto:gtorrent@ccruncher.net
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model in order to reduce the dimensionality, and finally interprets the model as a Bernoulli

mixture model to estimate the parameters. The CCruncher model implements the t-Student

multi-factor copula even for high-dimensional portfolios, and it is formulated according to the

Basel II concepts (PD, EAD, LGD).

CCruncher quantifies the portfolio credit risk by sampling the portfolio loss distribution and

computing the appropriate statistics (EL, VaR, ES). The portfolio losses are obtained simulating

the time-until-default of obligors and simulating the EADs and LGDs of their assets. The time-

until-default of obligors is a multivariate distribution in which the marginals are the probabilities

of default given by obligors’ ratings and in which the dependence between obligors is determined

by obligors’ industrial sectors. CCruncher assumes that the dependence structure is a t-Student

copula, specifically a t-Student multi-factor copula in which the factors are the industrial sectors.

CCruncher requires a portfolio with a buy-and-hold policy in which each obligor has a rating

assigned and belongs to a single economic sector. An example of such a credit portfolio could

be an SMEs loan portfolio (buy-and-hold policy, rated obligors, and multiple sectors in which

each obligor belongs to a single sector) or a portfolios of bonds. Unlike CreditMetricsTM,

CCruncher does not follow a mark-to-market account, but rather follows a two-state model

(default/no-default).

The advantages of CCruncher are as follows: 1) the model allows multiple factors; 2) the model

allows multiple ratings; 3) obligors can have multiple assets; 4) each asset has its own EAD and

LGD; 5) these EADs and LGDs can be stochastic values; 6) EADs and LGDs can vary over time;

7) CCruncher allows risk disaggregation; 8) CCruncher does not presuppose a static transition

matrix; 9) factor correlations are appropriately considered; and 10) the uncertainty of parameters

is considered.

The disadvantages of CCruncher are as follows: 1) it is computationally intensive; 2) the

convergence rate of the Monte Carlo method is rather slow; 3) currently the obligors cannot

belong to a weighted sum of factors; 4) dependence only relies on sectors; 5) correlations

are constant over time; 6) currently only Gaussian and t-Student copulas are supported; and

7) mark-to-market is not supported.

The content is organized into three chapters. The first chapter details the distribution used to

simulate the obligors’ default times, and provides methods to estimate the copula parameters.

The second chapter describes how to obtain the portfolio loss distribution and quantify the

portfolio credit risk. Finally, the third chapter covers four important topics: risk sensitivity,

parameters uncertainty, and portfolio optimization. In order to facilitate reading, those issues that

are important to understanding the content and require a detailed discussion have been relegated

to appendices.



2 — Modeling Default Times

Financial institutions have statistical models that assigns a probability of default to each obligor

as well as statistical models for the exposure and recovery of each operation. These models allow

us to estimate the Expected Loss of the portfolio, but are insufficient to estimate the measures

related to economic capital such as VaR or ES. This is because these measures strongly depend

on the dependence between obligors, and models mentioned above do not refer to this concept.

This chapter develops the multivariate model using the existing PD, exposure and recovery

models.

2.1 The Copula Model

The multivariate time-until-default model described in this section is identical to that described

in [24, 13] [3, chap. 2.6]. We recommend perusing the appendices before proceeding. The

appendices contain definitions, statements, and notation regarding subjects used in this section.

The copula approach considers that the lifetimes of obligors are the proper manner in which to

explain the observed defaults. Obligors’ default times (T1, . . . ,Tn) are modeled by a multivariate

distribution F such that

F(t1, . . . , tn) = Pr{T1 ≤ t1, . . . ,Tn ≤ tn}

in which n is the number of obligors in the portfolio and Ti is the time-until-default (in years) of

the i-th obligor. Applying the Sklar’s theorem, we obtain

F(t1, . . . , tn) =C (F1(t1), . . . ,Fn(tn))

in which marginal Fi(t) = Pr{Ti ≤ t} is the time-until-default distribution of the i-th obligor and

C is a copula. CCruncher considers that each obligor has its own time-until-default distribution

depending on its rating; therefore, all obligors with identical ratings have identical distributions

(see Appendix A.1 to obtain these distributions from existing PD models). Regarding the copula,

CCruncher considers that C is a t-Student copula for the following practical reasons:

• it is determined by the correlation matrix (elliptical property).

• it is symmetrical (elliptical property), allowing application of the antithetic reduction

variance technique in the Monte Carlo simulation.

• it allows a wide range of dependence structures by parameter ν .

• it exhibits tail dependence when ν 6= ∞.

• it can be expressed as a t-Student multi-factor copula.

• an efficient simulation algorithm exists.

• the Gaussian case (ν = ∞) leads to the CreditMetricsTM model.

The following proposition reformulates F in terms of the multivariate t-Student distribution. This

result, combined with the Gaussian multi-factor distribution, provides an efficient simulation

algorithm and allows estimating the parameters.
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Proposition 2.1 — Multivariate default times distribution. Let T = (T1, . . . ,Tn), the time-

until-default of obligors with marginals F1, . . . ,Fn and a t-Student copula Ct
ν ,R̂

. Then its

distribution F is

F(t1, . . . , tn) = H
(
t−1
ν (F1(t1)), . . . , t

−1
ν (Fn(tn))

)

in which H is the cdf of the multivariate t-Student distribution tn(ν ,~0, R̂), and t−1
ν is the

inverse of the univariate t-Student distribution t1(ν ,0,1).

Proof. We note that X = (X1, . . . ,Xn) a vector having a multivariate t-Student distribution

tn(ν ,~0, R̂) and (U1, . . . ,Un) to represent the components of the copula Ct
ν ,R̂

.

F(t1, . . . , tn) = Pr{T1 ≤ t1, . . . ,Tn ≤ tn}=
we use the Corollary A.3: (T1, . . . ,Tn) = (F−1

1 (U1), . . . ,F
−1

n (Un))

= Pr{F−1
1 (U1)≤ t1, . . . ,F

−1
n (Un)≤ tn}=

we use the Corollary A.2: (U1, . . . ,Un) = (tν(X1), . . . , tν(Xn))

= Pr{F−1
1 (tν(X1))≤ t1, . . . ,F

−1
n (tν(Xn))≤ tn}=

= Pr{tν(X1)≤ F1(t1), . . . , tν(Xn)≤ Fn(tn)}=
= Pr{X1 ≤ t−1

ν (F1(t1)), . . . ,Xn ≤ t−1
ν (Fn(tn))}=

= H(t−1
ν (F1(t1)), . . . , t

−1
ν (Fn(tn)))

Corollary 2.1 — Default times simulation (I). Let T = (T1, . . . ,Tn), a random vector with

marginals F1, . . . ,Fn and a t-Student copula Ct
ν ,R̂

. Then we can simulate this distribution using

a multivariate t-Student distribution X ∼ tn(ν ,~0, R̂):

(T1, . . . ,Tn) =
(
F−1

1 (tν(X1)) , . . . ,F
−1

n (tν(Xn))
)

in which tν is the cdf of the univariate t-Student distribution t1(ν ,0,1).

The current situation is not yet satisfactory because the dimension n×n of the correlation matrix

R̂ indicates that any attempt to simulate random values or estimate the parameters cannot be

performed in practice when n is large. For these reason we restrict the copula model to the

multi-factor formulation.

2.2 The Multi-Factor Formulation

To develop a correlation matrix that is easy to handle, we assume that a reduced number s of

industrial sectors exists and that each obligor belongs to a single sector. In addition, we assume

that obligors’ time-until-default dependence only relies on the involved industrials sectors. With

these restrictions and by sorting the obligors by sector, we see that the obligors’ time-until-default
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correlation is an n×n correlation block matrix R̂ = Bs(~n,~1,Σ).

R̂ = Bs(~n,~1,Σ) =




1 · · · σ11 σ1s · · · σ1s

...
. . .

... · · · ...
...

σ11 · · · 1 σ1s · · · σ1s

...
. . .

...

σ1s · · · σ1s 1 · · · σss

...
... · · · ...

. . .
...

σ1s · · · σ1s σss · · · 1




Σ =




σ11 · · · σ1s

...
. . .

...

σ1s · · · σss




~n = (n1, . . . ,ns)

n =
s

∑
i=1

ni

Consequently, the multivariate time-until-default distribution F can be expressed by its marginals

Fi and a t-Student copula Ct
ν ,R̂

in which R̂ = Bs(~n,~1,Σ).

As we have observed, Proposition 2.1 establishes the link between the t-Student copula and

the multivariate t-Student distribution. Now, we are interested in formulating this multivari-

ate t-Student distribution with correlation matrix R̂ = Bs(~n,~1,Σ) as a t-Student multi-factor

distribution.

Proposition 2.2 — t-Student distr. as a multi-factor distribution. Let a random vec-

tor X = (X1, . . . ,Xn) be with a multivariate t-Student distribution tn(ν ,~0, R̂) in which R̂ =
Bs(~n,~1,Σ) is a correlation block matrix and ni sizes are high enough. Then X can be written

as a t-Student multi-factor distribution as follows:

X
j

i =

√
ν

V
·
(

wi ·Zi +
√

1−w2
i · ε

j
i

)
, where





i = 1, . . . ,s s is the number of factors

j = 1, . . . ,ni ni is i-th factor size

V ∼ χ2
ν 2 ≤ ν degrees of freedom

Z ∼ N(~0,R) R a s×s correlation matrix

wi ∈ (0,1) the factor loadings

ε
j

i ∼ N(0,1) iid ∀ i, j

V,Z,ε j
i indep. ∀ i, j

The relationship between the multi-factor coefficients ~w, R and the multivariate t-Student

correlation matrix R̂ = Bs(~n,~1,Σ) is

Ri j =
σi j√

σii·σ j j
∀ i, j

wi =
√

σii i = 1, . . . ,s

We call t-Student multi-factor copula to the copula of the t-Student multi-factor distribution. As

we have observed, the t-Student multi-factor copula (Ct
ν ,~w,R) is merely a t-Student copula (Ct

ν ,R̂
).

The inverse is not true, there exist t-Student copulas with a correlation block matrix that cannot

be expressed as a t-Student multi-factor copula (see Appendix A.5 and Proposition A.6).

Note that we expressed the multi-factor distribution in terms of the factor loadings and the factor

correlation matrix instead of the more concise form based on the covariance matrix. We do this

because the factor loadings have a treatment distinct from the factor correlation in the estimation

procedure.

The t-Student multi-factor distribution combined with the Corollary 2.1 provides an efficient

algorithm to simulate the obligors’ default times disclosed in the next corollary. Later we will
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use this algorithm to simulate the portfolio losses.

Corollary 2.2 — Default times simulation (II). Let T = (T1, . . . ,Tn) be a random vector

with marginals F1, . . . ,Fr and a t-Student multi-factor copula with ν degrees of freedom,

factor loadings ~w, and factor correlation matrix R. Then we can simulate this distribution:

1. Simulate the factors,~z ∼ N(~0,R).
2. Simulate the degrees of freedom, υ ∼ χ2

ν .

3. For each obligor, repeat the following steps:

(a) Simulate ε ∼ N(0,1).
(b) Simulate the multivariate t-Student component using the obligor’s sector:

x =
√

ν
υ ·
(

wi · zi +
√

1−w2
i · ε
)

(c) Obtain the obligor’s default time using the obligor’s rating:

t = F−1
j (tν(x))

We want to estimate the copula parameters of the multivariate default times distribution. These

parameters are the degrees of freedom ν , the factor loadings ~w, and the factor correlation matrix

R. The historical data available for parameters calibration are panel data type. Calibration with

such data leads to the interpretation of the current model as a Bernoulli mixture model.

2.3 The Bernoulli Mixture Model

The available historical data lead us to interpret obligors’ defaults as conditionally independent

Bernoulli random variables. In this section we reinterprets the multi-factor copula model as a

Bernoulli mixture model in order to estimate the copula parameters.

Definition 2.1 — Annual number of defaults. We define the annual number of defaults by

sector and rating such as a discrete multivariate random variable K = (K11, . . . ,Ksr) in which

Ki j =

{
number of defaults in the i-th sector having the

j-th rating at the beginning of the 1-year period

}

taking in account that

Ni j =

{
number of obligors in the i-th sector having the

j-th rating at the beginning of the 1-year period

}

Note that Ki j ≤ Ni j. We use the superscript to indicate the observation at time t (e.g., Kt
i j).

Example 2.1 — Historical data. Suppose that our portfolio has two sectors, S1 and S2,

and four ratings, A, B, C, and D, in which D is the defaulted status. We collected the number

of defaults by sector and rating from the past 20 years. We organized the collected data as

follows:
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N (# obligors) K (# defaults)

S1 S2 S1 S2

Year A B C A B C A B C A B C

1 529 932 293 685 1249 206 3 12 15 3 25 10

2 522 977 278 638 1315 194 1 18 13 7 28 8
...

...
...

...
...

...
...

...
...

...
...

...
...

20 492 962 310 602 1227 183 6 28 21 4 31 16

Below, we provide an algorithm to simulate the annual number of defaults. The algorithm is a

direct application of the multivariate default times distribution using the t-Student multi-factor

distribution (see Proposition 2.1 and Proposition 2.2). We will use it to generate samples with

which to test the parameters estimation procedures.

Algorithm 2.1 — Annual number of defaults simulation. We have a credit portfolio with

n obligors. We identified s distinct sectors and categorized the individual risk profiles in r

ratings. The number of obligors in each sector-rating bucket is ni j. Obligor default times

are modeled according a multivariate default times distribution with annual probabilities

of default p1, . . . , pr and a t-Student multi-factor copula Ct
ν ,~w,R, where R is the s× s factor

correlation matrix. Then we can simulate a sample of size M of the annual number of defaults

by sector-rating doing the following:

• Compute the Cholesky decomposition of R

R = L ·L⊺

• For m = 1, . . . ,M repeat the following steps:

1. Initialize the simulated annual number of defaults

km
i j = 0 i = 1, . . . ,s j = 1, . . . ,r

2. Simulate the correlated factors

~z = L ·~y where ~y ∼ N(0, Id)
3. Simulate the chi-square factor

υ ∼ χ2
ν

4. For each sector i = 1, . . . ,s repeat the following steps:

– For each rating j = 1, . . . ,r repeat the following steps:

∗ For each one of the ni j obligors repeat the following steps:

· Simulate the t-Student component

x =
√

ν
υ ·
(

wi · zi +
√

1−w2
i · ε
)

where ε ∼ N(0,1)

· Check for the default event

If x < t−1
ν (p j) then km

i j = km
i j +1

5. Print the m-th annual number of defaults

km
11, . . . ,k

m
sr

Before proceeding to estimate the parameters, we derive the density of the number of observed

defaults from the multivariate default times distribution. More information is available in [30,

16, 9].

Proposition 2.3 — Density of the annual number of defaults (I). The density of the

annual number of defaults, assuming that multivariate default times have marginals F1, . . . ,Fr
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and a t-Student copula Ct
ν ,R̂

with R̂ = Bs(~n,~1,Σ), is

K(k11, . . . ,ksr ; ν , R̂) = Pr{K11 = k11, . . . ,Ksr = ksr ; ν , R̂}=

=

(
s

∏
i=1

r

∏
j=1

(
ni j

ki j

))
·
∫ t−1

ν (p1)

−∞︸ ︷︷ ︸
k11 times

∫ ∞

t−1
ν (p1)︸ ︷︷ ︸

n11−k11 times

. . .
∫ t−1

ν (pr)

−∞︸ ︷︷ ︸
ksr times

∫ ∞

t−1
ν (pr)︸ ︷︷ ︸

nsr−ksr times

f (x1, . . . ,xn) dx1 . . . dxn

in which s is the number of sectors, r is the number of ratings, ni j and ki j are respectively

the number of obligors and defaults in the i-th sector with the j-th rating, p j = Fj(1) is the

probability of default within 1 year of the j-th rating, f (~x) is the pdf of tn(ν ,~0, R̂), and t−1
ν is

the inverse of the cdf of the univariate t-Student. The combinatorial coefficients consider all

combinations of exchangeable obligors.

We are not aware of an analytical expression for the density of the annual number of defaults.

Furthermore, the numerical solution of the integral is difficult when the number of obligors is

larger than just a few. Therefore, we attempt to solve the problem recurring in the multi-factor

formulation.

Proposition 2.4 — Conditional density of the annual number of defaults. The condi-

tional density of the annual number of defaults, assuming that multivariate default times have

marginals F1, . . . ,Fr and a t-Student multi-factor copula Ct
ν ,~w,R, is

K(k11, . . . ,ksr | υ ,~z ; ν ,~w,R) = Pr{K11 = k11, . . . ,Ksr = ksr | υ ,~z ; ν ,~w,R}=

=
s

∏
i=1

r

∏
j=1

(
ni j

ki j

)
·Hi j(υ ,zi)

ki j · (1−Hi j(υ ,zi))
ni j−ki j

in which

Hi j(υ ,zi) = Φ




√
υ
ν · t−1

ν (p j)−wi · zi

√
1−w2

i




and s is the number of sectors, r is the number of ratings, ni j and ki j are respectively the

number of obligors and defaults in the i-th sector with the j-th rating, p j = Fj(1) is the

probability to default within 1 year of the j-th rating, Φ is the cdf of the univariate N(0,1),
and t−1

ν is the inverse of the cdf of the univariate t-Student. The combinatorial coefficients

consider all combinations of exchangeable obligors.

Proof. We use the pdf of the default times distribution (see Proposition 2.1) to obtain the

probability that an obligor k belonging to i-th sector with j-th rating defaults the first year

conditioned to zi and υ :

Hi j(υ ,zi) = Pr{Tk ≤ 1 | υ ,zi}= Pr{Xk ≤ t−1
ν (Fj(1)) | υ ,zi}= Pr{Xk ≤ t−1

ν (p j) | υ ,zi}

in which Tk is the k-th component of the multivariate default times and Xk is the k-th component

of the multivariate t-Student. Now we express X in the multi-factor form:

Hi j(υ ,zi) = Pr

{√
ν

υ
·
(

wi · zi +
√

1−w2
i · ε

j
i

)
≤ t−1

ν (p j) | υ ,zi

}
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Because υ and zi are fixed and independent from ε
j

i ∼ N(0,1), we obtain

Hi j(υ ,zi) = Φ




√
υ
ν · t−1

ν (p j)−wi · zi

√
1−w2

i




Hi j is the probability that an obligor defaults in 1 year. The probability of observing ki j failures

in a set of ni j independent obligors follows a binomial distribution:

Bin(ki j ; ni j,Hi j) =

(
ni j

ki j

)
·Hki j

i j · (1−Hi j)
ni j−ki j

The product for all sectors and ratings gives the stated formula. We can do the product because

υ and zi are fixed.

Corollary 2.3 — Density of the annual number of defaults (II). We can express the

density of the annual number of defaults using the conditional density:

K(k11, . . . ,ksr ; ν ,~w,R) = Pr{K11 = k11, . . . ,Ksr = ksr ; ν ,~w,R}=

=
∫ ∞

2

∫

Rs
ψ(υ) ·φ(~z) ·K(k11, . . . ,ksr | υ ,~z ; ν ,~w,R) dz1 . . . dzs dυ

in which ψ is the pdf of χ2
ν and φ is the pdf of N(~0,R).

This expression has a dimension significantly less than before. Despite this, this expression does

not have a known analytical form and cannot be approximated numerically with accuracy when

the number of factors is high (e.g., 10). The following sections provide effective methods for

parameter estimation.

2.4 Frequentist Inference

The cohort approach provides a parametric estimator [5, sec. 3.1] based on estimates pi (proba-

bility that an obligor defaults) and pi j (probability that two obligors default simultaneously). We

have adapted to the general case (t-Student) assuming the ν parameter is fixed and known.

Definition 2.2 — Implied covariance estimator. We assume that all obligors in a sector

are exchangeable (identical rating per sector) and that we know the degrees of freedom

of the t-Student multi-factor copula. We define the estimator of the factors’ covariance,

σi j = wi ·w j ·Ri j, as that value σ̃i j that satisfies

pi j =
∫ t−1

ν (pi)

−∞

∫ t−1
ν (p j)

−∞
f (x,y ; ν , σ̃i j) dx dy where





pi =
∑kt

i

∑nt
i

p j =
∑kt

j

∑nt
j

pii =
∑kt

i ·(kt
i−1)

∑nt
i ·(nt

i−1) i = j

pi j =
∑kt

i ·kt
j

∑nt
i ·nt

j
i 6= j

in which nt
i and kt

i are respectively the number of obligors and defaults in the i-th sector and

t-th year, f (x,y ; ν ,σi j) is the pdf of the bivariate t-Student, and t−1
ν is the inverse of the
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cdf of the univariate t-Student. Listing 2.1 implements this estimator in the R programming

language.

Listing 2.1: Implied covariance (R script)

#install.packages (" mvtnorm ")

library(mvtnorm)

pri <- function(i, K, N)

{

if (sum(dim(K) != dim(N))) stop("K␣and␣N␣dim␣differs")

if (i <= 0 | ncol(K) < i) stop("i␣out -of -range")

ret = sum(K[,i])/sum(N[,i])

return(ret)

}

prij <- function(i, j, K, N)

{

if (sum(dim(K) != dim(N))) stop("K␣and␣N␣dim␣differs")

if (i <= 0 | ncol(K) < i) stop("i␣out -of -range")

if (j <= 0 | ncol(K) < j) stop("j␣out -of -range")

if (i != j) {

ret = sum(K[,i]*K[,j])/sum(N[,i]*N[,j])

}

else {

ret = sum(K[,i]*(K[,i]-1))/sum(N[,i]*(N[,i]-1))

}

return(ret)

}

f <- function(r, nu , p1, p2, p12)

{

q1 = qt(p1 , df=nu)

q2 = qt(p2 , df=nu)

R = matrix(nrow=2, ncol=2, 1)

R[1,2] = R[2,1] = r

val = pmvt(lower=c(-Inf ,-Inf), upper=c(q1,q2), corr=R, df=nu)

return(p12 -val)

}

implied_covariance <- function(nu , K, N)

{

if (sum(dim(K) != dim(N))) stop("K␣and␣N␣dim␣differs")

n = ncol(K)

ret = matrix(nrow=n, ncol=n, 0)

for(i in 1:n) {

for(j in i:n) {

p1 = pri(i, K, N)

p2 = pri(j, K, N)

p12 = prij(i, j, K, N)

ret[i,j] = uniroot(f, nu, p1, p2 , p12 , interval=c( -0.9 ,0.9))$root

ret[j,i] = ret[i,j]

}

}

return(ret)

}
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Example 2.2 — Implied covariance estimator. Consider the following scenario:

• Two sectors {S1, S2}

• Number of obligors by sector~n = (1250,750)
• Default probability by sector pS1 = 2.5% and pS2 = 7%

• Degrees of freedom ν = 15

• Factor loadings ~w = (0.3,0.25)
• Factors correlation R12 = 0.1

We simulate the number of defaults of this scenario 1000 times using Algorithm 2.1. Then,

we compute the implied covariance estimator and display the results in the table below.

Exact Estimated

w2
1 = 0.09 w2

1 ≈ σ̃11 = 0.0882

w2
2 = 0.0625 w2

2 ≈ σ̃22 = 0.0662

w1 ·w2 ·R12 = 0.0075 w1 ·w2 ·R12 ≈ σ̃12 = 0.0072

The drawbacks of the implied covariance estimator are that: 1) it does not consider parameter

uncertainty, 2) it requires knowing in advance the value of ν , and 3) it only supports one rating

per sector. This last point is crucial because it implies the absence of an economic cycle. For

these reasons, one should not use this estimator. The rest of this chapter is devoted to developing

a generic estimation procedure that avoids these problems.

2.5 Bayesian Inference

The sample correlation coefficient of 20 Gaussian values has a high uncertainty [21, pp. 217-221].

This stylized fact reflects our situation because we are trying to estimate factor correlations

among other values. Uncertainty is exacerbated because our variables are continuous and latent

but we are estimating from observations of type count-data. Thus, considering the estimated

parameters as fixed values such as the Maximum Likelihood estimator is a naive and risky

proposition. The Bayesian approach appears more appropriate [17, 32] because it considers the

uncertainty of the parameters. Later we will see how to transfer this uncertainty to the assessment

of credit risk.

We define a numerically feasible likelihood function using the conditional density of the number

of defaults, thus implying that the parameters to be inferred are ν ,~w,R and the latent variables

υ1,~z1, . . . ,υT ,~zT .

Definition 2.3 — Likelihood function. Assume a set of observations {Kt ,Nt}t=1,...,T in

which Nt and Kt are vectors representing the number of obligors and defaulted obligors in

each sector-rating bucket. We define the likelihood of these observations as

L(ν ,~w,R,υ1,~z1, . . . ,υT ,~zT ; K1, . . . ,KT ) =

=
T

∏
t=1

ψν(υ
t) ·φR(~z

t) ·K(kt
11, . . . ,k

t
sr | υ t ,~zt ; ν ,~w,R) =

=
T

∏
t=1

ψν(υ
t) ·φR(~z

t)
s

∏
i=1

r

∏
j=1

(
nt

i j

kt
i j

)
·Hi j(υ

t ,zt
i)

kt
i j ·
(
1−Hi j(υ

t ,zt
i)
)nt

i j−kt
i j

in which ψν is the pdf of χ2
ν , φR is the pdf of N(~0,R), and Hi j is the function defined in
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Proposition 2.4.

We apply the Metropolis-Hastings algorithm to this conditional likelihood to infere the distri-

bution of variables ν ,~w,R,υ1,~z1, . . . ,υT ,~zT . Refer to Appendix A.6 for a description of this

algorithm adapted to our case.

Proposition 2.5 — Parameters estimation. We can estimate the parameters of the t-

Student multi-factor copula from the observed annual number of defaults using the Metropolis-

Hastings algorithm detailed in Algorithm A.3, considering

• parameters θ ≡ {ν ,~w,R,υ1,~z1, . . . ,υT ,~zT}
• observations y ≡ {Kt ,Nt}t=1,...,T

• likelihood f (y | θ)≡ L(ν ,~w,R,υ1,~z1, . . . ,υT ,~zT ; K1, . . . ,KT ) see Definition 2.3

• proposal distributions q j(θ j | θ ′
j)≡ N(θ ,σ j) all parameters

• prior distribution ν ≡ Unif(2,300)
• prior distribution wi ≡ Unif(0,1) i = 1, . . . ,s
• prior distribution ri j ≡ Unif(−1,+1) i = 1, . . . ,s j > i

• prior distribution~zt ≡ Unif(−10,+10) t = 1, . . . ,T
• prior distribution υ t ≡ Unif(0,1000) t = 1, . . . ,T

Example 2.3 — Model parameters estimation. Let us consider the following scenario:

• t-Student copula with ν = 20.

• Three ratings {A, B, D} in which D is the defaulted status and three sectors {S1, S2,

S3} having the following 1-year probabilities of default, factor loadings, and factor

correlation matrix:

pA = 2%

pB = 8%
, ~w = (0.4,0.25,0.3) , R =




1 0.5 0.3
0.5 1 0.4
0.3 0.4 1




• The number of obligors by sector-rating is

N (# obligors)

S1 S2 S3

Obs A B A B A B

1 250 750 500 500 750 250

2 250 750 500 500 750 250
...

...
...

...
...

...
...

1000 250 750 500 500 750 250

1000 observations case. We simulate 1000 observations of the number of defaults by sector-

rating using Algorithm 2.1. Then we infer the parameters distribution from this sample using

Metropolis-Hastings Algorithm A.3. The results are displayed in Figure 2.1. Note that the

variance of factor loadings is lower than the factor correlations.

20 observations case. To appreciate the effect of the number of observations in the final

result, we repeated the estimation procedure but considered only the first 20 observations

instead of the 1000 available. The results are displayed in Figure 2.2. Note that the parameters

uncertainty increases dramatically. The scenario depicted here is common; generally, we
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have just a few decades of observations. Later we will see how to transfer this parameters

uncertainty to the assessment of portfolio risk.

K (# defaults)

S1 S2 S3

Obs A B A B A B

1 1 14 11 50 11 14

2 2 67 8 26 3 10
...

...
...

...
...

...
...

1000 40 285 19 68 20 37

(a) Simulated defaults

18 19 20 21 22 23

0
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0
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(b) ν estimated distribution
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(c) Factor loadings estimated distribution
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e
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(d) Factor correlations estimated distribution

Figure 2.1: Model parameters estimation (1000 obs.)

Averaged PDs. We may be tempted to consider an averaged PD by sector when we lack data

disaggregated by rating. The tests we have conducted indicate that in the Gaussian case (ν = ∞),

this could be an option because the estimated parameters using the averaged PDs approximately

match the expected values. By contrast, when ν 6= ∞, this does not work. In Example 2.3, the

averaged 1-year PDs by sectors are

pS1
= 250

1000 · pA +
750
1000 · pB = 6.5% NS1

= 250+750 = 1000

pS2
= 500

1000 · pA +
500
1000 · pB = 5.0% NS2

= 500+500 = 1000

pS3
= 750

1000 · pA +
250
1000 · pB = 3.5% NS3

= 750+250 = 1000

Constrained model. When we have a significant number of factors (e.g., 10) and a reduced set

of observations (e.g., 20), then the uncertainty of the factor correlation matrix can be high. In

these cases, one may consider a constrained model [9] that assumes that all factor correlations

have the identical value or similar assumptions that reduce the number of correlations from

which to estimate s×(s−1)/2 to only a few.
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K (# defaults)

S1 S2 S3

Obs A B A B A B

1 1 14 11 50 11 14

2 2 67 8 26 3 10
...

...
...

...
...

...
...

20 24 190 35 84 65 50

(a) Simulated defaults
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(b) ν estimated distribution
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(c) Factor loadings estimated distribution
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(d) Factor correlations estimated distribution

Figure 2.2: Model parameters estimation (20 obs.)

Degrees of freedom. We observed that factor correlations and degrees of freedom are interwoven.

When we fix one of them with a value more distinct than generated data and we estimate the

other one, the latter reacts to compensate for the modification. This effect is more pronounced

when the number of observations is reduced and the amount of information available is scarce,

causing the estimations of ν and R to have a high uncertainty. The Gaussian case (ν = ∞) avoids

this problem and reduces the number of parameters to estimate (we do not need to estimate ν

and υ t in which t = 1, . . . ,T ). The risk analyst must evaluate the appropriateness of the Gaussian

model considering the amount of information available, the number of factors, the renounce to

capture the tail dependence, the Deviance Information Criterion (DIC) values, etc.
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3.1 Portfolio Loss Distribution

Figure 3.1 displays the hierarchy of the portfolio components. As we observed in Chapter 2, each

obligor belongs to a single sector/factor and has a PD depending only on its rating. CCruncher

considers that obligors’ default times distribution has marginals Fi and a t-Student multi-factor

copula with ν degrees of freedom, factor loadings ~w, and factor correlation matrix R.

Portfolio Obligor

PD(t)

Asset

LGD(t)

EAD(t)

✲

✲

✲

✲

✲

1:n

1:1

1:n

1:1

1:1

Figure 3.1: Hierarchy of the portfolio components

We define the EAD and LGD concepts used to model the credit risk emphasizing the temporal

dimension. These concepts and the PD defined in Appendix A.1 are those of the Basel II

accord [28], the de-facto international financial risk regulation framework.

Definition 3.1 — Exposure at Default (EAD). The Exposure at Default of the j-th asset of

the i-th obligor at time t indicates the total amount that the bank is exposed if the obligor

defaults:

EAD
j
i (t) =

{
amount in risk of the j-th asset of the i-th obligor

if this defaults at time t, measured in currency

}

EAD
j
i (t) is a function when these amounts are fixed and known in advance (e.g., loan, bond)

or a distribution when these values are stochastic (e.g., line of credit).

Definition 3.2 — Loss Given Default (LGD). The Loss Given Default of the j-th asset of

the i-th obligor at time t indicates the percentage of effective loss over the total exposure. This

value depends on endorsements, guarantees, type of asset, default time, etc.

LGD
j
i (t) =

{
percentage of the EAD

j
i (t) that is definitively

lost if the i-th obligor defaults at time t

}

LGD
j
i (t) can be a function or a distribution.

Example 3.1 — 10-year Bond. Assume a 10-year, fixed-rate bond with an annual coupon

of 4% issued by a company rated BB. The EAD for this asset can be obtained from its

expected cash flow because it is known in advance. We suppose that the bank’s internal



22 Modeling Portfolio Loss

models indicate that in this case the LGD is a Beta(5,2) distribution regardless of the default

time. Figure 3.2 illustrates the defined concepts applied to this asset.
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Figure 3.2: 10-year bond example

Definition 3.3 — Portfolio Loss at time T . The Portfolio Loss at time T is the accumulated

losses in the time range [0,T ] caused by obligors that default (fail to make payments that they

are obligated to make).

LT =
{

sum of portfolio losses in time range [0,T ]
}

Assume a credit portfolio in which the obligors’ default times (T1, . . . ,Tn) is a multivariate

distribution. In addition, we consider that each i-th obligor has mi assets with known EAD and

LGD. Thus, the portfolio loss distribution at time horizon t is

Lt =
n

∑
i=1

✶[0,t](Ti) ·
(

mi

∑
j=1

EAD
j
i (Ti) ·LGD

j
i (Ti)

)

CCruncher assumes that the multivariate default times distribution has marginals Fi and a t-

Student multi-factor copula with degrees of freedom ν , factor loadings ~w, and factor correlation

matrix R. CCruncher generates samples of the portfolio loss distribution simulating the obligors’

default times. Portfolio loss distribution is approximated by the empirical distribution of the

sample, and credit risk is measured using the appropriate statistics.

The portfolio loss distribution Lt does not have a closed form except in a few cases. One

of those cases is the Large Homogeneous Pool (LHP). Vasicek [34] developed an analytical

formula in the Gaussian case for the loss distribution of an infinitely large portfolio. Later,

Schloegl and O’Kane [29] extended the formula to the t-Student case. The assumptions of these

approximations are 1) a one-factor model, 2) an infinitely large portfolio, 3) equal PDs, and

4) equal exposure. These simplified models must be managed with care because they can cause

problems [25] when the assumptions are not realized.
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Algorithm 3.1 — Portfolio losses sampling. Let a portfolio be categorized in s sectors and

r ratings. Assume a multivariate default times distribution with marginals Fi and a t-Student

multi-factor copula Ct
ν ,~w,R. We can then simulate a sample of size M of the portfolio loss

distribution at time T by performing the following:

• Compute the Cholesky decomposition of R = L ·L⊺

• For m = 1, . . . ,M repeat the following steps:

1. Lossm = 0

2. Simulate s independent N(0,1),~y
3. Simulate correlated factors doing~z = L ·~y
4. Simulate υ ∼ χ2

ν

5. For each obligor i = 1, . . . ,n repeat the following steps:

– Set si = i-th obligor sector index

– Set ri = i-th obligor rating index

– Simulate ε ∼ N(0,1)

– Compute xi =
√

ν
υ ·
(

wsi · zsi +
√

1−w2
si · ε

)

– Compute ti = F−1
ri (tν(xi))

– if ti ≤ T , then for each asset j belonging to i-th obligor

∗ Evaluate or simulate EAD
j
i (ti)

∗ Evaluate or simulate LGD
j
i (ti)

∗ Lossm = Lossm +EAD
j
i (ti) ·LGD

j
i (ti)

6. print Lossm

Example 3.2 — Large Homogeneous Pool. Assume a portfolio composed of 1000

exchangeable obligors (with identical ratings and sectors) in which every obligor owes 1e to

1 year, the 1-year default probability is p = 10%, and the factor loading is 20%. This problem

is close to fulfilling the LHP assumptions. In the Gaussian case, the density is [3, chap. 2.5]:

fp,w(x) =

√
1−w2

w
· exp



(
N−1(x)

)2

2
−

(
N−1(p)−

√
1−w2 ·N−1(x)

)2

2 ·w2




in which w is the factor loading, p is the probability to a 1-year horizon, and x ∈ (0,1)
represents the percentage of loss in the portfolio.

File $CCRUNCHER/samples/test04.xml contains the CCruncher input file of this example.

Figure 3.3 displays the theoretical distribution provided by the LHP approach and the dis-

tribution approximated by CCruncher, which, as expected, are quite similar. If we reduce

the number of obligors from 1000 to 100, then the LHP assumptions are broken and the

distribution provided by the LHP approach fails.

3.2 Credit Risk Measurement

After N simulations (e.g., 20,000, 500,000 or more) of the portfolio loss, we measure the

portfolio credit risk computing the corresponding statistics and their standard errors according to
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Figure 3.3: Large Homogeneous Pool example

sample size.

3.2.1 Portfolio risk

In this section we provide the definitions and formulas of the most usual credit risk measures.

Figure 3.4 illustrates the concepts presented in this section. Any other user-defined risk measure

can be estimated from the simulated sample, and its standard error can be obtained using

resampling methods.

Nobody 

defaults

Everybody 

defaults

Expected

Loss
VAR99%

Economic Capital at 99% confidence

1% tail region

ES99%

Figure 3.4: Portfolio Loss Distribution at time T

Expected Loss

The Expected Loss attempts to answer the question, “What is my expected loss for the next

year?”

Definition 3.4 — Expected Loss (EL). The Expected Loss of a portfolio at time horizon T
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is the mean of the portfolio loss distribution.

EL(LT ) = E(LT )

Expected Loss can be approximated using the following statistic:

EL = µ̂ ±Φ−1

(
1−α

2

)
· σ̂√

N
being





µ̂ =
1

N

N

∑
i=1

xi

σ̂ =

√
1

N −1

N

∑
i=1

(xi − µ̂)
2

in which xi are the simulated portfolio losses, α is the error confidence level, Φ−1 is the N(0,1)
inverse cumulative distribution function, and µ̂ and σ̂ are the mean and standard deviation

estimators.

Value at Risk

The Value at Risk [20] is the most commonly used risk measure to respond to the question, “How

much could I lose in a really bad year?”

Definition 3.5 — Value at Risk (VaR). The Value at Risk of a portfolio at time horizon T

and confidence level β is the β -quantile of the portfolio loss distribution at time T . Consider

VaRβ (LT ) = inf{x ∈ R | F(x)≥ β}

in which F(x) = Pr{LT ≤ x} is the portfolio loss distribution at time T .

Value at Risk can be approximated using the following statistic:

VaRβ = q̂β ±Φ−1
(

1−α
2

)
· stderr(qβ ) being





k

N
≤ β <

k+1

N

q̂β = xk:N

stderr(qβ ) =
√

C2 −C2
1 being





M = [N ·β +0.5]
a = M−1

b = N −M

Wi = B(a,b, i+1
N
)−B(a,b, i

N
)

Ck = ∑
N
i=1Wi · xk

i

in which xi are the simulated portfolio losses, xk:N is the k-th element of ascendant-sorted values,

α is the error confidence level, Φ−1 is the N(0,1) inverse cumulative distribution function, q̂β is

the quantile estimator, stderr(qβ ) is the estimation of the standard error using the Maritz-Jarrett

method described in [35, chap. 3.5.3], [x] is the integer part of x, and B(a,b,x) is the regularized

incomplete beta function. When the sample size is high, the incomplete beta function can be

difficult to ascertain due to convergence problems. Also, a large sample size causes the evaluation

of the incomplete beta function multiple being this computation numerically costly.
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We note that the variance of the VaR is difficult to evaluate. Fortunately, it is asymptotically

normal distributed [4]. This result allows to estimate the VaR value using a numerically stable

procedure. This will be done in a future version of this document.

Expected Shortfall

VaR is not a coherent risk measure because it does not fulfill the sub-additive property [19].

Expected Shortfall is a coherent risk measure similar to VaR [1].

Definition 3.6 — Expected Shortfall (ES). The Expected Shortfall (aka Conditional VaR,

aka Conditional Tail Expectation) of a portfolio at time horizon T and confidence level β is

the average of the worst β% portfolio losses at time T ,

ESβ (LT ) = E(LT | LT ≥ VaRβ (LT ))

Expected Shortfall can be approximated using the following statistic:

ESβ = µ̂ ±Φ−1

(
1−α

2

)
· σ̂√

K
being





µ̂ =
1

K

K

∑
i=1

yi

σ̂ =

√
1

K −1

K

∑
i=1

(yi − µ̂)
2

in which {y1, . . . ,yK} = {xi | xi ≥ VaRβ}i=1,...,N are the simulated portfolio losses larger than

VaRβ , α is the error confidence level, Φ−1 is the N(0,1) inverse cumulative distribution function,

and µ̂ and σ̂ are the mean and standard deviation estimators. This estimator assumes that the

estimated VaRβ has the exact value. Despite this, if the sample size is high enough, then the

estimated value is good enough.

Like VaR, ES is asymptotically normal distributed [4]. This result allows to estimate the value of

the ES in a more rigurous way. This will be done in a future version of this document.

Example 3.3 — test05.xml. Assume a portfolio composed of 1000 obligors in which

every obligor owes 1e to 1 year. Then EAD1
i (t) = ✶[0,1](t), with a LGD1

i (t) = 100%. There

are 4 ratings {A, B, C, D}; D is the defaulted status, and the remaining ratings have the

following 1-year default probability: pA = 5%, pB = 10%, pC = 20%. Factor loadings are

~w = (0.4,0.35), and the factors correlation is Cor(S1,S2) = 0.25. The t-Student copula has

ν = 15 degrees of freedom, and the number of obligors by sector and rating are

S1 S2

A B C A B C

167 166 167 167 167 166

File $CCRUNCHER/samples/test05.xml contains the CCruncher input file of this example.

Figure 3.5 displays the portfolio loss density and risk measures obtained using 200,000 values

simulated by CCruncher.

It is difficult to ascertain the validity of this example. Some authors [14] obtained quasi-

analytical expressions for the Gaussian two-factor model with a common PD; however, those

expressions are not applicable to this example (t-Student, multiple PDs). One manner in which
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to check that the result is correct involves disaggregating the simulated portfolio losses by

sector-rating (see Section 3.2.2) and estimating the parameters ν ,~w, and R with the first 1000

simulations using the procedure described in Section 2.5. If the estimated parameters match

the parameters of the example, we have consistent simulation and estimation algorithms.

Observe that in this case, the simulated losses can be equated to the number of defaults

because each defaulted obligor is computed as a 1e loss.

Statistic Value Std. Err.

EL 116.58 0.16

VaR95% 252.00 1.09

VaR99% 338.00 2.22

VaR99.9% 442.00 5.44

ES95% 304.63 0.49

ES99% 383.82 0.96

ES99.9% 480.98 2.71

(a) Risk measures
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Figure 3.5: 2-factors example

3.2.2 Risk Disaggregation

Once we have measured the credit risk, naturally arises the question “how much of this risk

corresponds to the business unit X?” CCruncher allows defining and simulating sub-portfolio

losses in order to respond this question.

CCruncher simulates the entire portfolio loss at time T . It also allows (in the same execution) to

obtain the sub-portfolios losses. In CCruncher, a sub-portfolio is called a segment. The disjoint

union of segments covering the entire portfolio is called a segmentation, i.e., a segmentation

is composed by non-overlapped segments that constitute the entire portfolio. For example, we

can define the segmentation of geographic areas where the bank operates composed by four

segments {N, S, E, W}. When an obligor defaults, the loss of its assets is added into the entire

portfolio loss and into the segments’ loss where each asset resides. CCruncher allows defining

and managing multiple segmentations simultaneously.

Expected Loss

Expected Loss is additive respect the portfolio composition, i.e., if L, L1, and L2 are respectively

the portfolio, sub-portfolio 1, and sub-portfolio 2 loss distributions in which L = L1 +L2, then

EL(L1)+EL(L2) = EL(L). The EL attributable to the k-th segment, in cash, is given by the

following statistic:

ELk =
1

N

N

∑
i=1

xk
i

in which xk
i are the simulated losses of the k-th sub-portfolio. Dividing ELk by the portfolio EL

gives the percentage of EL consumed by this sub-portfolio.

Value at Risk

Value at Risk is not additive, it is not even sub-additive [19]. As mentioned in [3, chap. 5.2.2],

calculating VaR risk measure contributions is a natural but difficult attempt. In the CCruncher
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case, problems arise when we try to estimate E
(
Lk | L = VaRβ (L)

)
because the subsample of

simulated sub-portfolio losses having a portfolio loss equal to VaRβ has a very small size. For

this reason, CCruncher don’t provides support for VaR disaggregation.

Expected Shortfall

Expected Shortfall can be disaggregated using the simulated losses of the portfolio and its

sub-portfolios. As indicated in [3, chap. 5.2.3], the contribution of k-th sub-portfolio to ES is

given by E
(
Lk | L ≥ VaRβ (L)

)
. The ES attributable to the k-th segment, in cash, is given by the

following statistic:

ESk =
1

K

K

∑
i=1

yk
i

in which xi are the simulates portfolio losses, xk
i are the simulated losses of the k-th sub-

portfolio, and {yk
1, . . . ,y

k
K}= {xk

i | xi ≥VaRβ}i=1...N are the simulated sub-portfolio losses having

a portfolio loss large than VaRβ . Dividing ESk by the portfolio ES gives the percentage of ES

consumed by this sub-portfolio.

Example 3.4 — Risk disaggregation. We use the identical scenario as that described in

Example 3.3 and that corresponds to CCruncher input file test05.xml. This example defines

a segmentation named sector-rating with segments S1-A, S1-B, S1-C, S2-A, S2-B, S2-C.

Segment X-Y is composed by the obligors located at sector X with the rating Y; each segment

has ≈ 166 obligors. Figure 3.6 displays the risk disaggregated respect this segmentation.

S1−A 

 7.16 %

S1−B 

 14.23 %

S1−C 

 28.64 %

S2−A 

 7.17 %

S2−B 

 14.33 %

S2−C 

 28.47 %

(a) EL disaggregation

S1−A 

 12.52 %

S1−B 

 17.34 %

S1−C 

 23.62 %

S2−A 

 10.54 %

S2−B 

 15.11 %

S2−C 

 20.88 %

(b) ES99% disaggregation

Figure 3.6: Risk disaggregation

3.3 Simulation Details

Antithetic variates. CCruncher generates random samples from the portfolio loss distribution.

This sample is used to estimate the risk measures (e.g., VaR) using the statistics described

in Section 3.2 or any other required by the analyst. Any one of these measures, considered
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individually, can be formulated as a Monte Carlo problem and can apply some variance reduction

techniques (e.g., importance sampling [4]), but not simultaneously. CCruncher implements the

antithetic variates method (see Appendix A.7) in order to increase the simulation speed instead

to reduce the EL variance.

In CCruncher the random sampling of the portfolio loss distribution is performed using g(X)
in which X is a multivariate t-Student distribution and g(x) = F−1(tν(x)). We use the fact that

the multivariate t-Student distribution X is symmetrical, that is, (x1, . . . ,xn) is equiprobable to

(−x1, . . . ,−xn), to apply the antithetic method. Expected Loss is the unique statistic that benefits

from the variance reduction. However, rather than reducing the variance, we are interested in the

reusing of the simulated random numbers to increase the simulation speed. When we use the

antithetic method to sample the default times and there are some stochastic EADs or LGDs, we

use distinct EADs’ and LGDs’ random values for each variate.

EAD and LGD interpolation. Given an asset, CCruncher knows its EAD and LGD values at

fixed times {t1, . . . , tn} provided by the user. When we evaluate these functions in a time value

distinct from those provided, we use the following piecewise constant interpolation:

EAD(t) = EAD(tk)
LGD(t) = LGD(tk)

}
where tk−1 < t ≤ tk

PD functions approximation. CCruncher allows defining the PD functions using the transition

matrix or defining explicitly the PD values at some fixed times. When PDs are defined using the

transition matrix, CCruncher uses Proposition A.2 to derive Fi for each month, and intermediate

values are interpolated using cubic splines. When PDs are defined explicitly at some fixed times,

then intermediate values are interpolated using cubic splines; however, if the resulting function

is not strictly increasing, then CCruncher uses linear splines.

Function composition. To speed up the evaluation of the functions t = F−1
r (tν(x)), involved

in the simulation of obligors’ default times, we interpolate these functions using splines. We

only consider the dates where exist some asset event {t1, . . . , tk} and its values xk = t−1
ν (Fr(tk)).

For each rating r, CCruncher try to minimize the number of interpolation points applying the

following procedure:

• The initial linear spline Sr() is defined at (x1, t1) and (xk, tk).
• Repeat until max |ti −Sr(xi)|< 1 hour for all i = 1, . . . ,k

– Let ti be the date on which maximum error is achieved

– Add the interpolation point (xi, ti) to the cubic spline function Sr().

Spline function Sr() use cubic splines; however, if the resulting function is not strictly increasing,

then CCruncher uses linear splines.

Interest rate. CCruncher allows considering the Net Present Value of the simulated losses. This

is computed using an interest rate curve defined at fixed times and interpolated using linear or

cubic splines (selected by user). Allowable methods are simple interest, compound interest and

continuous interest. The formulas used to compute the present value are as follows:

V0 =
Vt

1+r·∆t
V0 =

Vt

(1+r)∆t V0 =
Vt

exp(r·∆t)

(Simple) (Compound) (Continuous)

in which Vt is the value at time t and r is the interest rate given by the interest curve at time t.

Don’t consider this option if your EADs are the sum of cash flow on distinct dates. In this case,

we recommend filling the input file with the EADs’ present value and setting to 0 the interest

rate curve.
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Parallel computing. CCruncher parallelizes the portfolio loss sampling, spawning multiple

simulation threads, each with its own Mersenne twister Random Number Generator seeded with

consecutive values. When the number of obligors is high, data do not fit in the cache memory L1

and L2. The memory transfer is a time-consuming operation that must be minimized. To achieve

this, each thread simulates an obligor blocksize times (using the corresponding ν and~z) before

moving to the next one.

Parameterization. The CCruncher input file contains the data required to simulate the portfolio

losses (obligors, assets, EADs, LGDs, ratings, factor correlations, factor loadings, copula to use,

interest rates, segmentations, etc.). This file can be quite large due to portfolio description (e.g.,

1GB). When we evaluate the risk sensitivity or the effect of parameters’ uncertainty, we must

slightly modify the input file and reevaluate the portfolio loss distribution multiple times. To

simplify this task, CCruncher provides the macro mechanism, that allows using variables that are

replaced by the user-defined values anywhere they are located in the input file, and the automatic

evaluation of numerical expressions. Combining these two features, macros and the evaluation

of numerical expressions, provides a flexible manner in which to parameterize one’s input file

(e.g., 2000*$EUR2USD).
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4.1 Risk Sensitivity

In this section we make a basic sensitivity analysis evaluating the variation of a parameter s, in the

risk measure V . The goal is to determine the appearance of the curve V (s) (increasing/decreasing,

concave/convex, linear/quadratic/logarithmic, asymptotic behavior) and an estimate of the slope

given by ∂V
∂ s

.

It is difficult to draw general guidelines in the absence of a closed formula for the portfolio credit

risk that takes into account all the parameters: number of ratings, PDs over time, number of

sectors, number of obligors, EADs and LGDs for each asset, factor loadings, factor correlations,

and ν . For this reason, we lays out this section analyzing the case test05.xml exposed in

Example 3.3. In this case, we consider that risk measure is ES99% and parameters subject to

sensibility analysis are: n,~w,R,ν .

We sketch the function ES99%(s) by calculating ES99% in various consecutive values of the

analyzed parameter. Each of these values is obtained by applying the simulation procedure

described in Chapter 3. In order to reduce variations caused by the simulation procedure, we use

the same RNG seed in each evaluation.

Example 4.1 — Sensitivity to portfolio size. Common sense tells us that a large and

homogeneous portfolio must have the same risk (as percentage of the total exposure) that a

portfolio with the same characteristics but with twice obligors. Figure 4.1 shows the ES99%

by varying the number of obligors that compose the portfolio described in test05.xml. Note

that this value is almost equal in range [200,∞). In the range [50,200] we can appreciate

the impact of the small number of individuals in the risk measure, not very exaggerated

otherwise.
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Figure 4.1: ES99% vs. portfolio size

Two portfolios with distinct number of obligors but the same composition (sector weights,

exposures, recoveries) have the same credit risk as long as the number of obligors is high enough.

We can use this fact to assess the credit risk of really massive portfolios (e.g. > 0.5 million



32 Additional Topics

obligors). In this cases we can prune the portfolio (preserving the composition) and compute the

credit risk of the reduced porfolio.

Example 4.2 — Sensitivity to copula parameters. Figure 4.2 shows the portfolio risk

value ES99% depending on the copula parameters. Each dot is a risk value computed using a

simulation, the black dot corresponds to the original value in Example 3.3, and the confidence

bounds shows the impact of the parameter value in the error attributable to simulation (this

value is magnified in order to appreciate the impact).

If we consider only the range of feasible values (eg. wi ∈ (0,0.5), or ν ∈ (5,∞)), we note

that the impact of factor loading loadings and ν are similar. However, the impact of factor

correlations is much smaller. This is good news, because as we saw in the estimation of the

parameters, the uncertainty of factor correlations is much higher than that of factor loadings.

We also recall that in the estimation procedure, the values of factor loadings and ν are

interlaced.

The main drawback of sensitivity analysis is that it measures the impact of the uncertainty of a

parameter fixing the other ones. Another drawback is that it does not consider the distribution of

the parameters. The section that follows provides a solution to these problems.

4.2 Parameters Uncertainty

The estimation of dependence parameters (degrees of freedom ν , factor loadings ~w, and factor

correlation matrix R) has an uncertainty that cannot be ignored [32, 17]. Example 2.3 illustrates

this phenomenon and its magnitude (see the 20 observations case).

The CCruncher framework encourages incorporating the parameter uncertainty into the credit

risk valuation. This indicates that credit risk measures (e.g., VaR99%, ES99%) are regarded as

distributions instead of values. For example, in the case of the Value at Risk, we consider the

function VaR99%(LT (ν ,~w,R)) that depends on the multivariate random variables ν ,~w and R.

Note that Expected Loss is not affected by the uncertainty of dependence parameters because the

expectation satisfies E(X +Y ) = E(X)+E(Y ) even if X is not statistically independent of Y .

The solution recommended by CCruncher to determine the credit risk measure distribution is

the obvious one and is based on the identical procedure used to determine the distribution of the

portfolio loss or the distribution of the parameters: the random sampling of the risk measure

distribution.

On one hand, we have a procedure that generates random samples from the multivariate pa-

rameters distribution (see Proposition 2.5). These samples can be filtered to obtain a sample of

independent parameters values.

On the other hand, we are able to measure the credit risk of a portfolio considering that de-

pendence parameters are fixed values. This is performed sampling the portfolio loss (see

Algorithm 3.1) and computing the credit risk measure using the appropriate statistic (see Sec-

tion 3.2).

We combine both components to define an algorithm that samples the desired credit risk measure.

The empirical density given by this sample approximates the risk measure distribution and

allows evaluating the effect of the parameter uncertainty. One must be cautious because this

procedure unveils the copula parameters uncertainty, but other uncertainties remain hidden such
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Figure 4.2: ES99% sensitivity to copula parameters

as: 1) copula selection, 2) factors/sectors selection and assignation, 3) PDs uncertainty, and

4) EAD and LGD models accuracy.

Algorithm 4.1 — Credit risk measure distribution. Assume a portfolio (ratings, sectors,

PDs, EADs, LGDs) and the number of defaults observed by sector-rating in the previous

years. We can sampling the distribution of a credit risk measure (e.g., VaR99%) by performing

the following:

1. Obtain an ergodic sample of the parameters applying the Metropolis-Hastings algorithm

(see Proposition 2.5).

2. Remove the first iterations (burn-in period), and determine the minimum common

length B at which the ACFs are 0.

3. Let {ν t ,~wt ,Rt}t=1,...,N be the subsample of the parameters distribution composed by

the indexes multiples of B.
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4. For each simulated parameter, simulate the portfolio loss distribution LT (ν
t ,~wt ,Rt)

using the Algorithm 3.1.

5. For each simulated portfolio loss distribution, compute its risk measure using the

statistic described in Section 3.2: {VaR99%(LT (ν
t ,~wt ,Rt))}t=1,...,N .

Example 4.3 — Credit risk considering parameters uncertainty. We use the scenario

described in Example 3.3. We generate 20 observations of annual numbers of defaults using

the Algorithm 2.1 (in the real world, these observations are extracted from the historical

records). In the following lines, we apply Algorithm 4.1 to estimate the ES99% distribution,

considering the parameters’ uncertainty.

The first step includes the generation of a sample of the parameters’ distribution using the

Metropolis-Hastings algorithm. We performed 1,000,000 iterations. Figure 4.3 displays the

marginals of this distribution.

The second step is removing the first 20,000 iterations (burn-in period) and determining the

thin interval using the ACFs. Figure 4.4 shows the ACF for each parameter. A thin interval of

3000 is sufficient in this example.

The third step is pruning the parameters sample preserving only the simulated values whose

index is a multiple of 3000. Below is displayed part of the simulated values:

N ν w1 w2 R12

1 12.54 0.29 0.48 0.21

2 10.77 0.28 0.32 -0.28
...

...
...

...
...

300 10.06 0.33 0.36 0.02

The fourth step is the simulation of the portfolio loss distribution for each simulated parameter.

This is quite an intensive computation. The CCruncher’s command line execution and the

input file macro expansion can assist in performing this step. Listing 4.1 displays a simple

batch script to sequentially execute the required simulations. Those who have a cluster, a

cloud or a grid may consider to executing multiple parallel tasks.

Finally, the fifth step is the computation of the risk statistic for each portfolio loss distribution.

The density of the ES99% can be approximated using the empirical density. Listing 4.2

provides an R script to perform this task.

The exact value of the ES99% assuming that parameters are fixed and known is ≈ 383 e (see

Example 3.3). If we do not assume that parameters are known and we infer the parameters

from 20 observations of the numbers of defaults, then we obtain the distribution displayed in

Figure 4.5. The key point is to dispose a distribution indicating the feasible values that can

take the risk measure ES99%.

Listing 4.1: Execution of multiple CCrunchers (bash script)

mkdir data/MH001;

bin/ccruncher -cmd -o data/MH001 -DNU =12.54 -DW1 =0.29 \

-DW2 =0.48 -DR12 =0.21 samples/test05.xml > data/MH001/ccruncher.out;

mkdir data/MH002;
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Figure 4.3: Step 1 – Parameters sampling using M-H
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Figure 4.4: Step 2 – ACF of simulated parameters

bin/ccruncher -cmd -o data/MH002 -DNU =10.77 -DW1 =0.28 \

-DW2 =0.32 -DR12 =-0.28 samples/test05.xml > data/MH002/ccruncher.out;

...

mkdir data/MH300;

bin/ccruncher -cmd -o data/MH300 -DNU =10.06 -DW1 =0.33 \

-DW2 =0.36 -DR12 =0.02 samples/test05.xml > data/MH300/ccruncher.out;

Listing 4.2: ES99% distribution (R script)

getRisk <- function(dir)

{

filename = paste(dir , "/portfolio.csv", sep="")

data <- read.csv(filename , comment.char="#")

X = sort(data [,1])

n = length(X)

Y = X[as.integer(n*0.99):n]

ES99 = mean(Y)

sde = sqrt(var(Y)/length(Y))

return(c(ES99 ,sde))

}

dirs = dir("data", pattern="MH[[: digit :]{3}]*", full.names=TRUE)

values = matrix(ncol=2,nrow=length(dirs))

colnames(values) = c("ES99", "stderr")

for(i in 1: length(dirs)) {

values[i,] = getRisk(dirs[i])

}

plot(density(values [,1]))
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Figure 4.5: ES99% distribution

4.3 Portfolio Optimization

Once we knows the portfolio credit risk, naturally arises the question “How can I balance

the weights assigned to each business unit so that the total portfolio risk is minimized?” In

Section 3.2.2, we have seen that CCruncher allows defining sub-portfolios and it can disaggregate

the portfolio credit risk in terms of them. In this section we will see how to modify the weights

assigned to each sub-portfolio in order to optimize the portfolio credit risk. First of all, let’s

define the problems considered:

Definition 4.1 — Portfolio optimization. Let a portfolio composed of K sub-portfolios. We

want to determine the sub-portfolio weights αk that minimize one of the following problems1.

EL minimization ES minimization EL-ES minimization

min
αk

EL(L) min
αk

ES99%(L) min
αk

√
EL2 +ES2

99%

Subjecto to: Subjecto to: Subjecto to:

x0 = ES99%(L)

0 ≤ αk ≤ 1 ∀k

K

∑
k=1

αk = 1





y0 = EL(L)

0 ≤ αk ≤ 1 ∀k

K

∑
k=1

αk = 1





0 ≤ αk ≤ 1 ∀k

K

∑
k=1

αk = 1





where L = L1 + · · ·+Lk is the portfolio loss, and x0 and y0 are fixed values.

Sub-portfolio weights αk are the sub-portfolio exposures relative to total portfolio exposure at

1-year. The way to balance the portfolio composition is to add or subtract obligors preserving the

characteristics of each sub-portfolio. When we try to model this procedure we find two problems:

1) losses of portfolios with distinct composition are not comparable, 2) it is unclear the procedure

1We use ES99% but you can use any other risk measure depending on copula parameters, such as ES95% or VaR99%.
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to modify the composition of a sub-portfolio (we add half a debtor?, to wich rating and sector

we assign the new obligor?, new obligors have an averaged exposure and recovery?).

Fortunately these two problems are solvable. The first one is avoided considering the relative

losses on exposure rather than absolute losses. Thus, the relative portfolio loss at time horizon T

is

LT =

n

∑
i=1

✶[0,T ](ti) ·
(

mi

∑
j=1

EAD
j
i (ti) ·LGD

j
i (ti)

)

n

∑
i=1

(
mi

∑
j=1

avg
[0,T ]

(
EAD

j
i (t)
))

where T is the time horizon where portfolio loss is computed, n is the number of obligors,

(t1, . . . , tn) are the obligors’ default times, mi is the number of assets of the i-th obligor, and

EAD
j
i (t) and LGD

j
i (t) are the EAD and LGD functions of the j-th asset of the i-th obligor

evaluated at time t.

The second problem, the portfolio composition, is avoided by equating the number of obligors to

exposures. Suppose we have two sub-portfolios A and B with the same exposure, the first one

with 500 obligors, and the second one with 500 obligors. We want to balance the portfolio so that

ends up with 25% of the exposure in A and 75% in B. The way to implement it is eliminating

half of the obligors from A and adding 250 new obligors similar to those of B. That said, if

sub-portfolios A and B have a large number of homogeneous individuals, then we can maintain

the original number of individuals (500+500) and balance the portfolio by multiplying by 0.5
the A’s exposures and by 1.5 the B’s exposures.
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Figure 4.6: ES99% for distinct percentages of S1 and S2

Example 4.4 — Sub-portfolio weights. To check the accuracy of the equivalence between

the number of individuals and the exposures we analyze the case test05.xml (see Exam-

ple 3.3) considering the sub-portfolios S1 ( = S1A + S1B + S1C) and S2 (= S2A + S2B +

S2C). In this example we consider only two sub-portfolios, rather than the six defined, so

that the values can be clearly represented in the plane. First, we simulate different portfolio

compositions (50+950, 100+900, . . . , 950+50) and calculate the ES99% for each of them.

Next, we consider a fixed number of individuals (500+500) and we change the exposure of

individuals according to its sector so that we mimic the previous compositions. Figure 4.6
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displays the values modifying the composition of the portfolio (simulated) and the values

modifying the exposure of the obligors (approximated). In this case, both values are similar,

with an error less than 0.15%.

The equivalence between the number of debtors and the exposures has a very important advantage

since it allows optimizing without having to do multiple simulations. This is achieved by

simulating the losses of the current portfolio and by reusing these values to calculate any desired

composition of the portfolio. The following algorithm computes the risk of a weighted portfolio

reusing the simulated losses from the current portfolio.

Algorithm 4.2 — Risk of a weighted portfolio. Let a portfolio composed of K sub-

portfolios with an average exposure Ek for each of them in the period [0,T ]. We have

simulated the portfolio losses broken down by sub-portfolios. We want compute the EL and

ES99% of this portfolio with weights α1, . . . ,αK .

1. Obtain multiplicative factors: λk = αk · E
Ek

= αk

α0
k

2. Create weighted losses: yi =
K

∑
k=1

λk · xk
i i = 1, . . . ,N

3. Compute EL (see Section 3.2) using values {yi}i=1,...,N and divide this value by E to

obtain the EL relative to total exposure.

4. Compute ES99% (see Section 3.2) using values {yi}i=1,...,N and divide this value by E

to obtain the ES99% relative to total exposure.

where E = ∑
K
k=1 Ek is the total exposure, α0

k is the weight of the current k-th sub-portfolio, N

is the number of simulated losses, and xk
i is the i-th simulated loss of the k-th sub-portfolio.

The risk of weighted portfolio is continuous with respect to α1, . . . ,αK but it is not linear with

respect to this parameters because the rank statistic involved in the VaR99% and ES99% measures.

This is clearly shown in Figure 4.6.

Example 4.5 — Feasible portfolios. We consider the portfolio defined in test05.xml

(see Example 3.3). We want to know the values that can take the risk measures by changing

the composition of the portfolio. To achieve this, we consider the following weights:

{
(α1, . . . ,α6) | αi ∈ {0,0.1,0.2, . . . ,0.9,1} and

6

∑
i=1

αi = 1

}

This set of weights has 3003 elements. For each element of this set we compute the EL and

ES99% of the weighted portfolio applying the Algorithm 4.2. Result is displayed in Figure 4.7.

We have drawn the convex hull of the region and we have identified the relevant points. The

original portfolio is marked with a black dot and the corresponding optimal portfolios are

indicated with a arrow. The appearance of the EL-ES region is determined by the involved

sub-portfolios, in this case: S1A, S1B, S1C, S2A, S2B, S2C. Other segmentations (e.g.,

geographic areas, types of products) will lead to EL-ES regions with a different shape.

Now we have all the elements to solve the three optimization problems. Instead of presenting the

algorithm in pseudo-code, this time we use a basic R script exposed in Listing 4.3 to illustrate the

procedure. The optimized portfolio is the case test05.xml and optimization results are listed

in Table 4.1. Note that K −1 parameters are optimized rather than K. This is because we can

obtain the former doing α1 = 1−∑
K
i=2 αi. Note also that penalty functions are used to ensure the
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S1A S1B S1C S2A S2B S2C

A 40% 0% 0% 60% 0% 0%

B 100% 0% 0% 0% 0% 0%

C 0% 100% 0% 0% 0% 0%

D 0% 0% 100% 0% 0% 0%

E 0% 0% 40% 0% 0% 60%

F 10% 0% 30% 20% 0% 40%

G 20% 10% 10% 40% 0% 20%

(b) Portfolio composition

Figure 4.7: test05.xml feasible portfolios

restrictions compliance.

Listing 4.3: Portfolio optimization (R script)

evalPortfolio <- function(losses , w0, w1 , level =0.99)

{

if (length(w0) != length(w1)) stop("invalid␣parameters")

if (ncol(losses) != length(w0)) stop("invalid␣losses")

if (level <= 0 || level >= 1) stop("ES␣level␣out -of-range␣(0,1)")

n = nrow(losses)

k = ncol(losses)

lambda = w1/w0

loss = rep(0, n)

for(i in 1:k) {

loss = loss + losses[,i]*lambda[i]

}

loss = sort(loss)

el = mean(loss)

es = mean(loss[as.integer(n*level):n])

return(c(el,es))

}

getW <- function(params)

{

w = c(0, params)

w[1] = 1-sum(w)

return(w)

}

f <- function(params , losses , w0, option , val , level =0.99)

{

if (!(option %in% (1:3))) stop("unrecognized␣option")

w1 = getW(params)

aux = 0

if (w1[1] < 0) {

aux = w1[1]

w1[1] = 0

}
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eles = evalPortfolio(losses , w0 , w1, level)

if (aux != 0) {

eles = eles + abs(aux)*10

}

if (option == 1) {

ret = eles [1] + 10*(val -eles [2])^2

return(ret)

}

else if (option == 2) {

ret = eles [2] + 10*(val -eles [1])^2

return(ret)

}

else if (option == 3) {

ret = sqrt(sum(eles ^2))

return(ret)

}

else return(NA)

}

losses <- read.csv("data/sector -rating.csv", comment.char="#")

exposures = c(167, 166, 167, 167, 167, 166)

w0 = exposures/sum(exposures)

eles0 = evalPortfolio(losses , w0, w0)

# EL minimization

params = w0[2: length(w0)]

opt = nlminb(params , f, losses=losses , w0=w0, option=1, val=eles0[2],

lower=rep(0,length(params)), upper=rep(1,length(params )))

w1 = getW(opt$par)

evalPortfolio(losses , w0 , w1)

# ES minimization

params = w0[2: length(w0)]

opt = nlminb(params , f, losses=losses , w0=w0, option=2, val=eles0[1],

lower=rep(0,length(params)), upper=rep(1,length(params )))

w2 = getW(opt$par)

evalPortfolio(losses , w0 , w2)

# optimization

params = w0[2: length(w0)]

opt = nlminb(params , f, losses=losses , w0=w0, option=3, val=NA,

lower=rep(0,length(params)), upper=rep(1,length(params )))

w3 = getW(opt$par)

evalPortfolio(losses , w0 , w3)

S1A S1B S1C S2A S2B S2C EL ES

current 16.7% 16.6% 16.7% 16.7% 16.7% 16.6% 11.6% 38.3%

min EL 68.9% 31.1% 0% 0% 0% 0% 6.6% 38.3%

min ES 18.7% 0% 21.3% 36.8% 0% 23.2% 11.6% 37.2%

min EL-ES 41.0% 0% 0% 59.0% 0% 0% 5.0% 27.0%

Table 4.1: test05.xml optimization
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A.1 The Probabilities of Default

Definition A.1 — Probability of Default (PD). Ti is the random variable that represents the

default time (aka time-until-default, aka survival time, aka time-to-default) of the i-th obligor.

We denote as Fi(t) the cumulative distribution function of Ti:

Fi(t) = Pr{Ti ≤ t}= Pr{ i-th obligor defaults before t years }

Note that Fi(t) is the probability of default (PD) of the i-th obligor at time horizon t. PD is

a key parameter used in the calculation of credit risk under Basel II. We indicate as pi the

probability that i-th obligor defaults within the time range [0,1].

pi = Pr{Ti ≤ 1 year}= Fi(1)

Note that the economic cycle is written on the default times distribution shape. Figure A.1

depicts the default time density of an obligor with current rating B, where bumps represent the

lean years, and its corresponding cdf (aka PD function).
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Figure A.1: Probability of Default function

CCruncher allows you to specify the PDs functions declaring the PDs’ values at user-defined

time points. These values must fulfill the following conditions:

• Fi(0) = 0 i = 1, . . . ,r i 6= default

• Fi(t) strictly increasing i = 1, . . . ,r i 6= default

• Fi(∞) = 1 i = 1, . . . ,r
• Fdefault(t) = 1 ∀ t ≥ 0

The functions specified in this manner are interpolated using cubic splines when the above

conditions are preserved and are interpolated using linear splines when they are not.

In general, what we know of the PD functions is limited. In some cases we have the rating

transition matrix, in others we only have the 1-year PD; if obligors are listed at the stock market

then we can use the Merton’s model to estimate the PD functions. Below, these cases are

analyzed. All three manners produce similar results in the short term (e.g., 1 year) but differ in

the middle and long term.
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A.1.1 Obtaining PDs from the transition matrix

Definition A.2 — Transition matrix. The T -years transition matrix gives the probability of
changing from i-th rating to j-th rating in a period of T years:

MT =




m11 · · · m1r

...
. . .

...

mr1 · · · mrr




in which r is the number of ratings and mi j is the probability that an obligor with i-th rating

ends up having the j-th rating after T years. A valid transition matrix must have its elements

in the range [0,1], the row sums equal to 1, a unique defaulted rating, and any rating ends up

defaulting.

Example A.1 — 1-year transition matrix. Table A.1 shows a transition matrix, extracted

from [18, p. 20], in which the probability that an obligor with rating AA changes to rating B

in one year is 0.14%. Note that the last column contains the 1-year default probabilities for

each rating and that the last row corresponds to the defaulted rating.

AAA AA A BBB BB B CCC Default

AAA 90.81 8.33 0.68 0.06 0.12 0.00 0.00 0.00

AA 0.70 90.65 7.79 0.64 0.06 0.14 0.02 0.00

A 0.09 2.27 91.05 5.52 0.74 0.26 0.01 0.06

BBB 0.02 0.33 5.95 86.93 5.30 1.17 0.12 0.18

BB 0.03 0.14 0.67 7.73 80.53 8.84 1.00 1.06

B 0.00 0.11 0.24 0.43 6.48 83.46 4.07 5.21

CCC 0.22 0.00 0.22 1.30 2.38 11.24 64.86 19.78

Default 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

Table A.1: 1-year transition matrix %

Proposition A.1 — Composed and scaled transition matrix. The transition matrix can

be composed and scaled in time using the following rules:

• MT1+T2
= MT1

·MT2

• Mk·T = Mk
T

• MT
k
= k
√

MT

The root of a matrix M can be obtained using the spectral decomposition M = P ·D ·P−1 doing

Mk = P ·Dk ·P−1, in which P and D are the eigenvectors and eigenvalue matrices of M.

Sometimes, the scaled transition matrix does not satisfy the Markov conditions (the row sum

is equal to one, and all elements are non-negatives). In this case, we must transform this

matrix to the relevant Markov matrix. This process is called regularization. Below is the QOM

regularization algorithm extracted from [23].
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Algorithm A.1 — Transition matrix regularization. The QOM (Quasi-Optimization of

the root Matrix) algorithm regularizes an n×n transition matrix M, row by row. The steps to

regularizing the i-th row are

1. Compute the difference between the row sum and one. Divide by n and subtract this

value from all non-zero components:

mi j 6= 0 =⇒ mi j = mi j −
1

n

(
n

∑
k=1

mik −1

)

2. If all the row elements are non-negative and add up to one, then stop: the row is

regularized.

3. Adjust any negative row element to zero and go to Step 1.

The algorithm stops after m steps, where m ≤ n. Apply the previous algorithm to every row.

The final matrix is a regularized matrix.

Deriving PD functions from the transition matrix implies that transition probabilities remain

constant over time, undermining the economic cycle effect. In practice, this constancy is

equivalent to considering an averaged economic cycle. See document [11, sec. 3.2.1] to obtain

additional information related with this section and the CreditMetricsTM approach.

Proposition A.2 — PDs derived from transition matrix. If MT is a transition matrix, then

the time-until-default distribution for an obligor with the i-th rating is

Fi(t) = Pr{T. ≤ t}= (Mt)id

in which T. is the time-until-default of an obligor with the i-th rating, d is the index of the

defaulted rating, Mt is the transition matrix scaled to time t, and (M)i j is the matrix element

located in the i-th row and the j-th column.

Example A.2 We derive the time-until-default distribution for each rating induced by the
transition matrix presented in Table A.1. As a first step, we scale the 1-year transition matrix
M1 to the 1-month transition matrix M 1

12
.

M 1
12
=




99.1972 0.7588 0.0320 0.0020 0.0112 −0.0011 −0.0001 0.0000

0.0635 99.1744 0.7083 0.0392 0.0015 0.0120 0.0018 −0.0007

0.0074 0.2057 99.1980 0.5102 0.0557 0.0189 −0.0001 0.0042

0.0014 0.0239 0.5507 98.8021 0.5164 0.0871 0.0077 0.0106

0.0027 0.0113 0.0396 0.7581 98.1557 0.8774 0.0889 0.0665

−0.0007 0.0098 0.0196 0.0111 0.6447 98.4443 0.4463 0.4240

0.0233 −0.0023 0.0170 0.1287 0.2166 1.2298 96.4213 1.9667

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 100




We observe that M 1
12

is not a regular matrix because of negative values. We apply the QOM
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algorithm to regularize it.

M̄ 1
12
=




99.1969 0.7586 0.0317 0.0018 0.0110 0.0000 0.0000 0.0000

0.0634 99.1744 0.7082 0.0391 0.0014 0.0119 0.0017 0.0000

0.0074 0.2057 99.1980 0.5102 0.0557 0.0189 0.0000 0.0041

0.0014 0.0239 0.5507 98.8021 0.5164 0.0871 0.0077 0.0106

0.0027 0.0112 0.0395 0.7581 98.1557 0.8774 0.0889 0.0665

0.0000 0.0099 0.0197 0.0111 0.6447 98.4444 0.4463 0.4240

0.0228 0.0000 0.0165 0.1282 0.2161 1.2293 96.4208 1.9663

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 100




Finally, we use Proposition A.2 to determine the PD function for each rating and month. The

results are displayed in Figure A.2.
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Figure A.2: PDs derived from transition matrix

A.1.2 Obtaining PDs from annual values

In some circumstances, the transition matrix is not available, and we only have the probability of

default at 1-year for each rating, p1, . . . , pr in which the r-th rating is the defaulted status. In the

absence of more information, we can consider a diagonal transition matrix such as the following:

M1 =




1− p1 · · · 0 p1

...
. . .

...
...

0 · · · 1− pr−1 pr−1

0 · · · 0 1




This simplified case has a closed-form solution stated by the following proposition.

Proposition A.3 — PDs derived from annual values. If the time-until-default of an

obligor satisfies a transition matrix and only depends on the 1-year probability of default pi,
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then this time-until-default follows the exponential distribution, i.e., Ti ∼ Exp(− ln(1− pi)).

Fi(t) = Pr{T. ≤ t}= 1− e−λi·t where λ =− ln(1− pi) i = 1, . . . ,r

Proof. We note that ratings are detached from one another. We use Proposition A.2 to obtain the
time-until-default distribution of the i-th rating:

(
1− pi pi

0 1

)t

=

(
1 1

1 0

)
·
(

1 0

0 1− pi

)t

·
(

0 1

1 −1

)
=

(
(1− pi)

t 1− (1− pi)
t

0 1

)

Then,

Fi(t) = 1− (1− pi)
t = 1− e−λi·t where λi =− ln(1− pi)

Example A.3 Suppose that we only know the annual probabilities of default and that these
values are those from the 1-year regularized transition matrix displayed in Table A.1. We call
the 1-year regularized transition matrix to M̄1 = M̄12

1
12

where M̄ 1
12

is computed in Example A.2.

In this case, the 1-year diagonal transition matrix is

M1 =




99.9991 0 0 0 0 0 0 0.0009

0 99.9923 0 0 0 0 0 0.0077

0 0 99.9400 0 0 0 0 0.0600

0 0 0 99.8200 0 0 0 0.1800

0 0 0 0 98.9401 0 0 1.0599

0 0 0 0 0 94.7997 0 5.2003

0 0 0 0 0 0 80.2154 19.7846

0 0 0 0 0 0 0 100




We determine the PD’s function for each rating using Proposition A.3, i.e., considering that

times-until-default are exponential distributions. These results are displayed in Figure A.3.

Observe that values around T = 1 are similar to those of Example A.2; however, they differ

as they move away from this.

A.1.3 Obtaining PDs from Merton’s model

In this section we expose the probability of default functions resulting of the Merton’s model [3,

sec. 3.3]. This method assesses the probability of default of a listed company based on market

information. If we assume that the firm’s debt amount remains constant over time considering

devaluation, then the probability of default under the Merton’s framework [6] is

Fi(t) = Φ


−

ln
(

Ai

Di·ert

)
+
(

µi − σ2
i

2

)
· t

σi

√
t




where Φ is the univariate Gaussian cdf, Ai is the firm’s asset value, Di is the book value of the

debt, µi is the firm’s asset value drift, σi is the firm’s asset value volatility, and r is the risk free

rate. We determine the conditions under which the function Fi is a valid cumulative distribution
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Figure A.3: PDs derived from annual values

function.

Fi(0) = 0 =⇒ lim
t→0

−
ln
(

Ai

Di·ert

)
+
(

µi − σ2
i

2

)
· t

σi

√
t

=−∞ =⇒ ln

(
Ai

Di

)
> 0 =⇒ Ai > Di

Fi(∞) = 1 =⇒ lim
t→∞

−
ln
(

Ai

Di·ert

)
+
(

µi − σ2
i

2

)
· t

σi

√
t

= ∞ =⇒ −r+µ <
σ2

i

2

F ′
i (t)> 0 =⇒ −2µ +2r+σ2 > 0 =⇒ −r+µ <

σ2
i

2

Both conditions are reasonable. The first one indicates that the current market value of the

company must exceed the value of its debt. The second one tells us that the expected annual

return should be close to the risk-free rate.

Example A.4 We draw the Merton’s probability of default functions so that they are

comparable to the functions of the previous examples. For this reason we consider that

the annual probabilities of default are those from the 1-year regularized transition matrix

displayed in Table A.1. Furthermore we fix the asset value drifts to the risk free rate (µi = r)

and assumes, arbitrary, that Ai/Di = 1.2. The remaining unknows σi are determined resolving

the ecuation

Fi(1) = pi = Φ


−

ln
(

Ai

Di

)
− σ2

i

2

σi






A.1 The Probabilities of Default 47

The following table exposes the parameters of the probabilities of default functions.

pi (in %) Ai/Di µi σi

AAA 0.0009 1.2 r → 0.0422

AA 0.0077 1.2 r → 0.0479

A 0.0600 1.2 r → 0.0558

BBB 0.1800 1.2 r → 0.0620

BB 1.0599 1.2 r → 0.0778

B 5.2003 1.2 r → 0.1085

CCC 19.7846 1.2 r → 0.1928

Finally, we use these values in the Fi(t) Merton’s formula to draw the probablities of default

exposed in Figure A.4.
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Figure A.4: PDs derived from Merton’s model
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A.2 Copula Basics

Figure A.5: Dependence structure effect

It is common to use correlation as a mea-

sure of dependency between random variables.

In most cases, this measure does not fully

reflect the structure of dependence between

the variables. Figure A.5 displays two cases

with the identical mean, marginals and corre-

lations but a distinct risk profile because the

two cases’ underlying dependence structure is

distinct (Gaussian copula vs. t-Student(3) cop-

ula). The mathematical concept that does re-

flect the structure of dependence between ran-

dom variables, however, is the copula, which

we define below. The world of copulas is vast

and quite interesting. See [26, chap. 5] for a

pleasant introduction to copulas.

Definition A.3 — Copula. A copula function C is a multivariate distribution defined on the

unit hypercube [0,1]d with standard uniform marginals. More precisely,

C(u1, . . . ,ud) = Pr{U1 ≤ u1, . . . ,Ud ≤ ud}

in which Ui ∼ Uniform(0,1) for i = 1, . . . ,d.

Sklar’s theorem [31] states that any multivariate distribution with continuous marginals can be

decomposed into the marginals and a copula that reflects the structure of dependence between

them. Later, we will use this statement to define and simulate the t-Student copula.

Theorem A.1 — Sklar’s theorem. Let F be a d-dimensional distribution function with

margins F1, . . . ,Fd . Then there is a d-copula C such that for all x ∈ Rd ,

F(x1, . . . ,xd) =C(F1(x1), . . . ,Fd(xd))

If F1, . . . ,Fd are all continuous, the C is unique; otherwise, C is uniquely determined on

RanF1 ×·· ·×RanFd . Conversely, if C is a d-copula and F1, . . . ,Fd are distribution functions,

then the function F defined above is a d-dimensional distribution function with margins

F1, . . . ,Fd .

Corollary A.1 — Copula of a multivariate distribution. Let X = (X1, . . . ,Xd) be a ran-

dom vector with a multivariate distribution F and continuous marginals F1, . . . ,Fd . Then its

copula is

C(u1, . . . ,ud) = F(F−1
1 (u1), . . . ,F

−1
d (ud))

Corollary A.2 — Copula simulation. Let X = (X1, . . . ,Xd) be a random vector with a

multivariate distribution F and continuous marginals F1, . . . ,Fd . If we have a procedure to
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simulate X , then we can simulate its copula C using:

(U1, . . . ,Ud) = (F1(X1), . . . ,Fd(Xd))

in which Ui are the copula components.

Corollary A.3 — Multivariate distribution simulation. Let X = (X1, . . . ,Xd) be a random

vector with a copula C and continuous marginals F1, . . . ,Fd . If we have a procedure to

simulate C, then we can simulate X using

(X1, . . . ,Xd) = (F−1
1 (U1), . . . ,F

−1
d (Ud))

in which Ui are the copula components.

Definition A.4 Spearman’s rho is a measure of dependence between two variables and it is

defined as the Pearson’s correlation coefficient between the ranked variables.

It has the important property that its value only relies on the underlying copula C, not on

marginals. It can be written as

ρs = 12

∫ 1

0

∫ 1

0
C(u,v) du dv−3

A.3 Multivariate t-Student Distribution

The majority of the results presented below have been extracted from [22, 8].

Definition A.5 — Multivariate t-Student distribution. The d-dimensional random vector

X = (X1, . . . ,Xd) is said to have a (non-singular) multivariate t-Student distribution with ν

degrees of freedom, mean vector~µ and positive-definite dispersion or scatter matrix Σ, denoted

td(ν ,~µ,Σ), if its density is given by

f (~x) =
Γ
(

ν+d
2

)

Γ
(

ν
2

)√
(πν)d |Σ|

(
1+

(~x−~µ)⊤Σ−1(~x−~µ)

ν

)− ν+d
2

in which Γ is the gamma function and |Σ| is the determinant of the matrix.

Proposition A.4 — t-Student covariance. The covariance matrix of the X ∼ td(ν ,~µ,Σ)
is

Cov(X) =
ν

ν −2
·Σ if ν > 2

Proposition A.5 — Gaussian as limit of the t-Student. The t-Student distribution con-
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verges to a Gaussian distribution when ν tends to ∞.

lim
ν→∞

td(ν ,~µ,Σ) = N(~µ,Σ)

Proposition A.6 — Multivariate t-Student characterization. A random vector T ∼
td(ν ,~µ,Σ) can be expressed as:

T
d
=~µ +

√
ν

V
·Z where Z ∼ N(~0,Σ) and V ∼ χ2

ν

Proposition A.7 — Multivariate t-Student marginals. Assume X ∼ td(ν ,~0,Σ). Then its

i-th marginal is Xi ∼ t1(ν ,0,σii).

Definition A.6 — t-Student copula. The t-Student copula, Ct
ν ,Σ, is the copula of the multi-

variate t-Student distribution td(ν ,~µ,Σ).

Proposition A.8 — t-Student copula equivalence. The copula of td(ν ,~µ,Σ) is identical

to that of td(ν ,~0,R) in which R is the correlation matrix implied by the dispersion matrix Σ.

Proposition A.9 — t-Student copula density. The t-Student copula, Ct
ν ,R, in which R is a

correlation matrix, has the following distribution function:

Ct
ν ,R(u1, . . . ,ud) =

∫ t−1
ν (u1)

−∞
· · ·
∫ t−1

ν (ud)

−∞
f (x) dx

in which f (x) is the density function of td(ν ,~0,R) and t−1
ν denotes the quantile function of

the univariate distribution t1(ν ,0,1). The copula density is

ct
ν ,R(u1, . . . ,ud) = |R|− 1

2
Γ
(

ν+d
2

)

Γ
(

ν
2

)
[

Γ
(

ν
2

)

Γ
(

ν+1
2

)
]d

(
1+

ζ ′R−1ζ

ν

)− ν+d
2

d

∏
i=1

(
1+

ζ 2
i

ν

)− ν+1
2

in which ζ = (t−1
ν (u1), . . . , t

−1
ν (ud)) is the vector of the t-Student univariate inverse distribu-

tion functions.

A.4 Covariance Block Matrix

The content presented in this appendix is detailed and extended in [33].



A.5 Multi-Factor Gaussian Distribution 51

Definition A.7 — Covariance block matrix. A matrix A is a covariance block matrix

Bk(~n, ~d,M) in which:

• ~n = (n1, . . . ,nk) with ni ∈ N and 1 ≤ ni (number of elements per block),

• ~d = (d1, . . . ,dk) with di ∈ R (diagonal block values), and

• M is a k×k symmetric matrix with values mi j ∈ R (block values)

when

• each block Bi j is an ni×n j constant matrix with value mi j

• diagonal blocks Bii have diagonal values di

• A is definite-positive.

Example A.5 — Correlation block matrix. We have 6 obligors sorted by sector. The
first three belong to the banking sector, the next two belong to the energy sector and the last
one belongs to the services sector. Obligors default time dependence is determined only by
sectors. Thus, the correlation matrix of the underlying elliptical copula is a correlation block
matrix.

~n = (3,2,1)
~d = (1,1,1)

M =




0.5 0.2 0.1
0.2 0.4 0.15

0.1 0.15 0.5








→ B3(~n, ~d,M) =




1 0.5 0.5 0.2 0.2 0.1
0.5 1 0.5 0.2 0.2 0.1
0.5 0.5 1 0.2 0.2 0.1
0.2 0.2 0.2 1 0.4 0.15

0.2 0.2 0.2 0.4 1 0.15

0.1 0.1 0.1 0.15 0.15 1




Proposition A.10 — Covariance block matrix eigenvalues. Let A = Bk(~n, ~d,M) a non-

singular matrix, and let G be the k×k deflated matrix

G =




d1 +(n1 −1) ·m11 n2 ·m12 · · · nk ·m1k

n1 ·m21 d2 +(n2 −1) ·m22 · · · nk ·m2k

...
...

. . .
...

n1 ·mk1 n2 ·mk2 · · · dk +(nk −1) ·mkk




Then, the eigenvalues of A are as follows:

• di −mii with multiplicity ni −1 for i = 1, . . . ,k.

• λi, the eigenvalues of G with multiplicity 1.

Corollary A.4 A covariance block matrix Bk(~n, ~d,M) is definite-positive if

• di > mii for all i = 1, . . . ,k, and

• the deflated matrix G is definite-positive.

A.5 Multi-Factor Gaussian Distribution

We only consider the case where the variances are 1, that is Var(Xi) = 1.
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Definition A.8 — Gaussian multi-factor distribution. We say that a multivariate distribu-

tion X follows a Gaussian multi-factor distribution if it can be expressed in this form:

X
j

i =wi ·Zi+
√

1−w2
i ·ε

j
i where





i = 1, . . . ,k k is the number of factors

j = 1, . . . ,ni ni is i-th factor size

Z ∼ N(~0,R) R is a k×k correlation matrix

wi ∈ (0,1) the factor loadings

ε
j

i ∼ N(0,1) iid ∀ i, j

Z,ε j
i independents ∀ i, j

An alternative definition based on the covariance matrix is

X
j

i = Zi+
√

1−Σii ·ε j
i where





i = 1, . . . ,k k is the number of factors

j = 1, . . . ,ni ni is i-th factor size

Z ∼ N(~0,Σ) Σ is a k×k covariance matrix

Σii ∈ (0,1) diagonal values of Σ

ε
j

i ∼ N(0,1) iid ∀ i, j

Z,ε j
i independents ∀ i, j

Proposition A.11 — The Gaussian multi-factor distribution is a Gaussian distribution.

The Gaussian multi-factor distribution defined by factor loadings ~w, the factor correlation

matrix R, and n=∑
k
i=1 ni is a multivariate Gaussian distribution with an n×n block correlation

matrix R̂ = Bk(~n,~1,Σ) with values Σi j = wi ·w j ·Ri j.

Proof. We check that the correlation between components of the Gaussian multi-factor distribu-

tion fulfill the equivalence.

Version with the correlation matrix R:

Var(X j
i ) = w2

i ·Var(Zi)+(1−w2
i ) ·Var(ε j

i )+2 ·wi ·
√

1−w2
i ·Cov(Zi,ε

j
i )

= w2
i +(1−w2

i ) = 1

Cor(X j1
i1
,X j2

i2
) = Cov(X j1

i1
,X j2

i2
)

= wi1 ·wi2 ·Cov(Zi1 ,Zi2)+wi1 ·
√

1−w2
i2
·Cov(Zi1 ,ε

j2
i2
)+

+
√

1−w2
i1
·wi2 ·Cov(ε j1

i1
,Zi2)+

√
1−w2

i1
·
√

1−w2
i2
·Cov(ε j1

i1
,ε j2

i2
)

= wi1 ·wi2 ·Cov(Zi1 ,Zi2)
= wi1 ·wi2 ·Ri1i2

Version with the covariance matrix Σ:

Var(X j
i ) = Var(Zi)+(1−Σii) ·Var(ε j

i )+2 ·
√

1−Σii ·Cov(Zi,ε
j

i )
= Σii +(1−Σii) = 1

Cor(X j1
i1
,X j2

i2
) = Cov(X j1

i1
,X j2

i2
)

= Cov(Zi1 ,Zi2)+
√

1−Σi2i2 ·Cov(Zi1 ,ε
j2

i2
)+

+
√

1−Σi1i1 ·Cov(ε j1
i1
,Zi2)+

√
1−Σi1i1 ·

√
1−Σi2i2 ·Cov(ε j1

i1
,ε j2

i2
)

= Σi1i2

The characterization of the multivariate Gaussian [2, thm. 2.6.2] posits that if every linear

combination of the components of a vector X is normally distributed, then X is normally
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distributed. It is straightforward to check that the multi-factor Gaussian model fulfills this

property and consequently is a multivariate Normal.

Proposition A.12 — Gaussian multi-factor distribution ( multivariate Gaussian block.

Any Gaussian multi-factor distribution can be expressed as a multivariate Gaussian block;

however, there are multivariate Gaussian blocks that cannot be expressed as a Gaussian

multi-factor distribution.

Proof. Proposition A.11 states that any multi-factor distribution is a multivariate Gaussian

composed of blocks. Next we see that the reciprocal is false. Let R̂ = Bk(~n,~1,Σ), the Gaussian

distribution correlation matrix. We use the equivalence Σi j =wi ·w j ·Ri j stated in Proposition A.11

to determine the cases that cannot be expressed as a multi-factor distribution.

Case 1. Factor loading with imaginary values.

Σii = wi ·wi ·Rii = w2
i

If Σii is negative, then wi has an imaginary value. For example,

R̂ =




1 −0.5 0

−0.5 1 0

0 0 1


−→ R =

(
1 0

0 1

)
, w = (

√
−0.5,1) !!

Case 2. Factor correlation with absolute value > 1.

Σi j = wi ·w j ·Ri j −→ Ri j =
Σi j

wi ·w j

=
Σi j√

Σii ·Σ j j

If Σ2
i j > Σii ·Σ j j, then Ri j has an absolute value larger than 1, which is not possible because

Ri j is a correlation value. For example,

R̂ =




1 0.5 0.6 0.6
0.5 1 0.6 0.6

0.6 0.6 1 0.5
0.6 0.6 0.5 1


−→ R =

(
1 0.6

0.5
0.6
0.5 1

)
!! , w = (

√
0.5,

√
0.5)

It is disturbing that multivariate block Gaussian distributions exist that cannot be expressed as a

multi-factor distribution. Fortunately, the cases in which this occurs have no practical application

to credit risk modeling in which the number of obligors in each block is higher. The following

proposition clarifies this theme.

Proposition A.13 — Gaussian multi-factor distribution ≈ multivariate Gaussian block.

Assume X ∼ N(~0, R̂) in which R̂ = Bk(~n,~1,Σ) is a correlation block matrix. Then X can be

expressed as a multi-factor Gaussian model if ni values are large enough.

Proof. We revise the cases in which the multivariate Gaussian distribution cannot be expressed

as a Gaussian multi-factor distribution, and we use Proposition A.10 to ascertain that if ni values

are large enough, then that is indeed a valid Gaussian multi-factor distribution.

Case 1. Factor loading with imaginary values.
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Factor loading wi with imaginary value is caused by Σii < 0. We use Proposition A.10

to determine the restrictions regarding Σii. We assume a unique factor. Because R̂ is a

covariance block matrix definite-positive, the deflated matrix has a positive determinant.

Then,

1+(n1 −1) ·Σ11 > 0

Σ11 >
−1

n1−1

tending n1 → ∞

Σ11 ≥ 0

Case 2. Factor correlation with absolute value > 1.

A factor correlation larger than 1 is caused by R12 =
Σ12√

Σ11·Σ22
in which Σ2

12 > Σ11 ·Σ22. We

use Proposition A.10 to determine the restrictions regarding Σ12. Because R̂ is covariance

block matrix definite-positive, the deflated matrix has a positive determinant. Then,

1+(n1 −1) ·Σ11 +(n2 −1) ·Σ22 +(n1 −1) · (n2 −1) ·Σ11 ·Σ22 −n1 ·n2 ·Σ2
12 > 0

Σ2
12 <

1
n1·n2

+ (n1−1)
n1·n2

·Σ11 +
(n2−1)
n1·n2

·Σ22 +
(n1−1)·(n2−1)

n1·n2
·Σ11 ·Σ22

tending n1 → ∞ and n2 → ∞

Σ2
12 ≤ Σ11 ·Σ22

A.6 Metropolis-Hastings Algorithm

This section contains a brief introduction to Bayesian inference using the Metropolis-Hastings

algorithm and is heavily influenced by the book Bayesian Modeling Using WinBUGS [27].

Bayesian statistics differ from classical statistical theory because all unknown parameters are

considered as random variables. We want to calculate the distribution f (θ | y) of the parameters

θ given the observed data y. According to the Bayes theorem, this can be written as

f (θ | y) =
f (y | θ) · f (θ)

f (y)
∝ f (y | θ) · f (θ)

We call posterior distribution to f (θ | y) and prior distribution to f (θ). This prior distribution

expresses the information available to the researcher before any data are involved in the statistical

analysis. f (y | θ) is the probability of observing y given θ and is also known as the likelihood.

f (y | θ) =
n

∏
i=1

f (yi | θ)

When utilizing Bayesian inference, we can identify a closed form of the posterior distribution in

only a few cases. Generally this must be determined by numerical methods. One of the most

used is the Metropolis-Hastings (M-H) algorithm, which belongs to the family of Markov Chain

Monte Carlo (MCMC) methods. These methods are based on the construction of a Markov chain

that converges on the target distribution, which, in our case, is the posterior distribution.

Definition A.9 — Markov chain. A Markov chain is a stochastic process
{

θ (1), . . . ,θ (T )
}
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such that

f
(

θ (t+1) | θ (t), . . . ,θ (1)
)
= f

(
θ (t+1) | θ (t)

)
,

that is, the distribution of θ at sequence t +1, given all the preceding θ values, depends only

on the previous value. When the Markov chain is irreducible, aperiodic, and positive-recurrent,

the distribution of θ (t) converges on its equilibrium distribution, which is independent of the

initial values of the chain θ (0).

The Markov chain is not an unfamiliar concept to us because the transition matrix (see Defini-

tion A.2) is a Markov chain in which its equilibrium state is the defaulted rating (i.e., just any

obligor ends up defaulting). The Metropolis-Hastings algorithm generates a sample from f (θ)
by constructing a Markov chain that has f (θ) as the equilibrium distribution.

Algorithm A.2 — Metropolis-Hastings. Let us assume a target distribution f (x) from

which we wish to generate a sample
{

x(0), . . . ,x(T )
}

. The Metropolis-Hastings algorithm can

be described by the following iterative procedure:

• Set initial values x(0)

• For t = 1, . . . ,T repeat the following steps:

1. Set x = x(t−1)

2. Let x′ be a random value from the proposal distribution q(x → x′) = q(x′ | x)

3. Calculate the acceptance rate α = min
(

1, f (x′)·q(x|x′)
f (x)·q(x′|x)

)

4. Update x(t) =

{
x′ with probability α

x(t−1) with probability 1−α

Because this is a Markov chain, the chosen starting point x(0) is irrelevant because the algorithm

converges on the target distribution no matter the starting point. If the starting point has low

probability in respect to the target distribution, then the initial samples do not come from the

equilibrium distribution and must be discarded until there is not equilibrium. We call the first B

iterations eliminated from the sample the burn-in period for this reason.

Bayesian inference. The Metropolis-Hastings algorithm outlined above can be directly imple-

mented to conduct Bayesian inference by substituting x with the unknown parameters θ and the

target distribution f (x) with the posterior distribution f (θ | y). Then, using the Bayes theorem,

the acceptance rate becomes

α = min

(
1,

f (θ ′ | y) ·q(θ | θ ′)
f (θ | y) ·q(θ ′ | θ)

)
= min

(
1,

f (y | θ ′) · f (θ ′) ·q(θ | θ ′)
f (y | θ) · f (θ) ·q(θ ′ | θ)

)

Random-walk Metropolis-Hastings is a special case with symmetrical proposals q(θ ′ | θ) =
q(θ | θ ′) in which q(θ ′ | θ) ≡ N(θ ,σ). In this case, the acceptance rate depends only on the

posterior distribution and in the Bayesian inference case becomes

α = min

(
1,

f (y | θ ′) · f (θ ′) ·q(θ | θ ′)
f (y | θ) · f (θ) ·q(θ ′ | θ)

)
= min

(
1,

f (y | θ ′) · f (θ ′)
f (y | θ) · f (θ)

)

The random walk fixes the shape of the proposal distribution and requires specifying the value

σ . This value has a direct non-linear effect on the acceptance ratio (#accepted/#iterations).

There is an optimal acceptance ratio that minimizes the auto-correlation and in most cases relies
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on the interval [0.234,0.44]. To avoid the manual tuning of the scale parameter σ , we use

the Robbins-Monro algorithm [15], which performs an adaptive scaling to achieve the desired

acceptance ratio.

Proposition A.14 — The Robbins-Monro process. To achieve an acceptance ratio p in

the random-walk Metropolis-Hastings algorithm, consider the following adaptive procedure:

σ (t+1) =





σ (t) ·
(

1+ 1
p·t

)
if θ ′ is accepted

σ (t) ·
(

1− 1
(1−p)·t

)
if θ ′ is rejected

in which the starting value σ (1) > 0 has an arbitrary value.

Metropolis-Hastings using logarithms. The product of functions involves complicated expres-

sions and accuracy problems. Therefore, it is usual to operate with logarithms. The logarithmic

version of the acceptance rate in the Bayesian inference case becomes

ln(α) = min
(

ln(1), ln
(

f (y|θ ′)· f (θ ′)
f (y|θ)· f (θ)

))
=

= min(0, ln f (y | θ ′)+ ln f (θ ′)− ln f (y | θ)− ln f (θ))

The single-component Metropolis-Hastings algorithm consists of updates of sequentially uni-

variate components using Metropolis-Hastings steps. One generated observation θ (t) is obtained

after updating all components of the parameter vector. Generally, the sequence of updating the

elements of θ does not influence the convergence of the algorithm. Nevertheless, to ensure

randomness, a random selection of the updating sequence is recommended. We use the notation

θ\ j to indicate the vector θ , excluding its j-th component [ θ\ j = (θ1, . . . ,θ j−1,θ j+1, . . . ,θd) ].

Algorithm A.3 — Bayesian inference using Metropolis-Hastings. Let f (y | θ) be the

likelihood function, with priors f j(θ j) and desired acceptance ratios p j. Then the parameters

distribution can be sampled using the following Metropolis-Hastings algorithm:

• Set initial values θ (0)

• Set initial values σ (0)

• For t = 1, . . . ,T repeat the following steps:

1. Set θ = θ (t−1)

2. Shuffle the update sequence

3. For j = 1, . . . ,d repeat the following steps:

a. θ ′
j = N(θ j,σ j)

b. Calculate the logarithm of the acceptance rate

ln(α) = ln f (y | θ ′
j,θ\ j)+ ln f j(θ

′
j ; θ\ j)− ln f (y | θ j,θ\ j)− ln f j(θ j ; θ\ j)

c. Simulate u ∼U(0,1)

d. Update θ j =

{
θ ′

j if ln(u)< ln(α)

θ j otherwise

e. Update σ
(t)
j =





σ
(t−1)
j ·

(
1+ 1

p j·t

)
if ln(u)< ln(α)

σ
(t−1)
j ·

(
1− 1

(1−p j)·t

)
otherwise

4. Set θ (t) = θ

The simulated values from the posterior distribution have ergodic properties; however, they are
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not independents. Independent values can be obtained by plotting the autocorrelation function

(ACF) and estimating the length, B, for which the autocorrelation is canceled. Then only the

values whose index is a multiple of B are considered. Notably, the estimated parameters are not

independent of one another; in fact, they form a multivariate distribution.

Example A.6 — Beta distribution calibration. We have a sample {y1, . . . ,y100} coming

from a Beta(2,5) distribution. We want to perform Bayesian inference to determine the value

of the parameters α and β using the Metropolis-Hastings algorithm presented above. The

density of the Beta distribution is

f (x ; α,β ) =
Γ(α +β )

Γ(α) ·Γ(β ) · x
(α−1) · (1− x)(β−1)

The log-likelihood function, then, is

ln f (y | α,β ) =
100

∑
i=1

lnΓ(α +β )− lnΓ(α)− lnΓ(β )+(α −1) · ln(yi)+(β −1) · ln(1−yi)

We know that α ∈ (0,10) and β ∈ (0,30). Therefore, we consider that prior distributions

fα() and fβ () are uniform distributions. Then,

ln fα(α ; β ) = ln( 1
10)

ln fβ (β ; α) = ln( 1
30)

We apply the Algorithm A.3 with starting point
(
α(0),β (0)

)
= (1,1) and desired acceptance

ratios (pα , pβ ) = (0.3,0.3). Figure A.6 displays the results after 25,000 iterations. Notably,

the first 500 iterations are not valid because the Markov chain has not achieved the equilibrium

distribution. These must be considered in the burn-in period. The histograms of the sampled

values approximate the parameters distribution that we are inferring.

A.7 Antithetic variates

The Monte Carlo method consists of sampling a distribution and averaging these values to

approximate the mean of this distribution. The main drawback of this method is the low rate of

convergence, on the order 1/
√

N. Variance reduction methods are procedures used to increase the

precision of the estimates of the Monte Carlo method. The main procedures are common random

numbers, antithetic variates, control variates, importance sampling and stratified sampling. This

section outlines contains the antithetic variates method.

We estimate E(g(X)) using the Monte Carlo method. Assume Y1 and Y2 as random variables

with the identical distribution X . This indicates that

E(g(X)) = E(g(Y1)) = E(g(Y2)) = E

(
g(Y1)+g(Y2)

2

)

and

Var

(
g(Y1)+g(Y2)

2

)
=

Var(g(Y1))+Var(g(Y2))+2 ·Cov(g(Y1),g(Y2))

4
=

Var(g(X))+Cov(g(Y1),g(Y2))

2

If g(Y1) and g(Y2) are negatively correlated, then the variance of N simulated values from Y1+Y2

is smaller than the variance of 2×N simulated values from X .
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Figure A.6: Metropolis-Hastings algorithm example

Two classic cases are :

X ∼ Uniform[0,1] =⇒ Y1 ∼ Uniform[0,1], Y2 ∼ 1−Uniform[0,1]
X ∼ N(0,1) =⇒ Y1 ∼ N(0,1), Y2 ∼−N(0,1)

Example A.7 In this example extracted from Wikipedia, we show how the antithetical

method works and how it is used by CCruncher. We would like to estimate the following

integral using the Monte Carlo method:

I =
∫ 1

0

1

1+ x
dx

In this case the random variable is U ∼ Uniform[0,1], and its variate is 1−U . Listing A.1

computes the integral value using plain Monte Carlo, Monte Carlo with antithetic method,

and Monte Carlo with antithetic variates but only to reduce the number of simulated values as

CCruncher does.

http://en.wikipedia.org/wiki/Antithetic_variates
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Sims N Mean Variance

Exact = ln(2) - - 0.693147 -

Monte Carlo 10000 10000 0.695685 0.019624

Antithetic 5000 5000 0.693404 0.000593

CCruncher 5000 10000 0.693099 0.019508

Listing A.1: Antithetic example (R script)

f <- function(x) { 1/(1+x) }

result = matrix(nrow=4, ncol =4)

colnames(result) = c("Sims", "N", "Mean", "Variance")

rownames(result) = 1:4

rownames(result )[1] = "Exact";

result [1,1] = 0

result [1,2] = 0

result [1,3] = integrate(f, lower=0, upper =1)$value

result [1,4] = 0

u = runif (10000)

rownames(result )[2] = "Monte␣Carlo";

result [2,1] = length(u)

result [2,2] = length(u)

result [2,3] = mean(f(u))

result [2,4] = var(f(u))

u = runif (5000)

rownames(result )[3] = "Antithetic";

result [3,1] = length(u)

result [3,2] = length(u)

result [3,3] = mean((f(u)+f(1-u))/2)

result [3,4] = var((f(u)+f(1-u))/2)

u = runif (5000)

u = c(u, 1-u)

rownames(result )[4] = "CCruncher";

result [4,1] = length(u)/2

result [4,2] = length(u)

result [4,3] = mean(f(u))

result [4,4] = var(f(u))

result
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